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From GAN training to Optimization of Differentiable Games
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1 Summary
In the previous lecture we introduced Wasserstein GANs (WGANs) which have the following min-max objective
function:

min
θ

max
φ

Ex∼pd [Fφ(x)]− Ez∼pz [Fφ(Gθ(z)] (1)

We understand that this payoff function depends on two parameters: φ and θ. The first one is used to define the discrim-
inator whereas the second defines the generator function. Interestingly, this objective can be casted as a minimization
of the Wasserstein distance as per the the WGAN paper [1]. The Wasserstein distance being:

W (p, q) = inf
γ∈Π(p,q)

E(x,y)∼γ [‖x− y‖] (2)

The motivation to minimize this distance is driven by the fact that it has interesting properties that the Jensen-Shannon
or Kullback-Leibler divergences do not have (these divergences are commonly used to characterize the classic GANs).
An attractive property of the WGAN is that it provides more stability during training.

In the this lecture, we will illustrate how to optimize a min-max objective function using gradient based optimization.
More generally, GANs and WGANs objective functions can be described as:

min
θ

max
φ
L(θ, φ) (3)

This function can then be optimized using gradient descent-ascent and the goal will be to reach a point where the
gradients are zero. We will later prove that in some cases this mean we have reached a Nash equilibrium.

2 GANs as differentiable games
As previously mentioned, the general objective function of a GAN can be defined as:

min
θ

max
φ
L(θ, φ)

In order to solve the above objective, one could leverage a gradient descent-ascent approach to optimize the two
parameters φ and θ: {

θt+1 = θt − η∇θL(θt, φt)

φt+1 = φt − η∇φL(θt, φt)

What the above suggest is that we are now looking for a set of points where the gradients are zero. It also means we
are looking for a wider set of points than the min-max since the gradients can equal zero in more scenarios. In other
words, a downside of this approach is that it is possible to get stuck in a situation where the gradients are zeros without
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being sure we are at a global solution.

Interestingly, the above objective function can be formulated as a minimax two player zero-sum game. This concept
was first defined within the original GAN paper [4]. All things considered, the objective of the lecture will be to
demonstrate that it is possible to optimize such games (or objective) using a gradient based approach and that we can
converge to a Nash equilibria given some specific settings.

2.1 Smooth games
Let’s say we want to solve the following objective function:

min
θ

max
φ
L(θ, φ)

This equation is not always easy to understand. Although, one can interpret the above as being the same as finding a
Nash equilibrium for a two-player minimax game with a value function of L(θ, φ).

Definition 1 (Nash equilibrium for a two parameters minimax game). A Nash equilibrium is defined as a pair (θ∗, φ∗)
where:

L(θ∗, φ) ≤ L(θ∗, φ∗) ≤ L(θ, φ∗) ∀(θ, φ)

To find the Nash equilibrium of this game, we first need to do some assumptions with respect to the payoff function.

Assumption 2 (Differentiable convex-concave payoff). If the payoff function L(θ, φ) is convex in θ, concave in φ and
differentiable for both parameters, it implies that we are at a Nash if and only if:

∇L(θ∗, φ∗) = 0

In other words, being at a Nash only happens when the gradients are zero. It is the case because of the nature of the
Nash equilibrium’s definition. For the above assumption to hold, we first need to be sure that a Nash actually exists in
such settings. To do so, we will consider the following theorem:

Theorem 3 (Sion’s Theorem [7]). If the payoff function is convex-concave where set U and V are convex and compact,
we have:

min
θ∈U

max
φ∈V
L(θ, φ) = max

φ∈V
min
θ∈U
L(θ, φ)

With this theorem, we will be able to prove that at the point when the min-max equals the max-min, we are at a Nash:

Proof.

Let : θ∗ ∈ arg min
θ

max
φ
L(θ, φ) ; φ∗ ∈ arg max

φ
min
θ
L(θ, φ) and min

θ
max
φ
L(θ, φ) = max

φ
min
θ
L(θ, φ)

Where: (θ∗, φ∗) is a Nash

We know our function is convex with respect to θ and concave with respect to φ. It will mean that if we first minimize
with respect to θ for any given φ and then maximize φ we will have a value that it is smaller or equal to the Nash:

max
φ

min
θ
L(θ, φ) ≤ L(θ∗, φ∗)

And if we first maximize with respect to φ for any given θ and then minimize with respect to θ, we will have a value
that is greater or equal to the Nash:

L(θ∗, φ∗) ≤ min
θ

max
φ
L(θ, φ)

Although, as per Sion’s theorem, we know that the min-max equals the max-min. Inserting the previous definition of
our optimal θ and φ, we get:

max
φ

min
θ
L(θ, φ) = min

θ
L(θ, φ∗) ≤ L(θ∗, φ∗) ≤ max

φ
L(θ∗, φ) = min

θ
max
φ
L(θ, φ)
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Given the function is convex in θ:

min
θ
L(θ, φ∗) ≤ L(θ∗, φ∗) =⇒ min

θ
L(θ, φ∗) = L(θ∗, φ∗)

Similarly for φ (concave):

L(θ∗, φ∗) ≤ max
φ
L(θ∗, φ) =⇒ L(θ∗, φ∗) = max

φ
L(θ∗, φ)

Which proves that the point when min-max equals max-min is a Nash.

One can also be interested in proving Sion’s theorem:

Proof. We assume that u and v are compact and convex sets and L(θ, φ) is convex-concave.

We define two players: Player 1 can play a strategy i from [n] possible strategies and Player 2 can play a strategy j
from [m] possible strategies. The payoff value of this game would be defined as li,j . We define a mixed strategies
(with finite possible actions) approach where µ is the mixed strategies for Player 1 and ν is the mixed strategies for
Player 2. Combining the above assumptions gives us the following payoff function:

L(µ, ν) = Ei∼µ,j∼ν [li,j ] =
∑

1≤i≤n,1≤j≤m

li,jµiνj

Where µi is the probability of Player 1 of playing action i (νj for Player 2). The above can be re-written in matrix
notation since it can be represented as a sum-product:

L(µ, ν) = µTLν

Where:l1,1 ... l1,m
... li,j ...
ln,1 ... ln,m

 , µ ∈ ∆n = {µ ∈ Rn/µT1 = 1, µ > 0} , ν ∈ ∆m = {ν ∈ Rm/νT1 = 1, ν > 0}

We just need to prove that the above sets are compact and convex which will then prove thatL(µ, ν) is convex-concave.
Since µTLν is linear which can be defined as being convex and concave, we can say that L(µ, ν) is convex-concave
as well since L(µ, ν) = µTLν.

Finally, we can state that the above sets are convex since µ and ν are probability vectors of dimension n and m and
therefore taking a convex combination of those probability vector will also give a probability vector.

These sets are also compact since the values are bounded within 0 ≤ µi ≤ 1 and 0 ≤ νi ≤ 1 which will also mean
that ‖µ‖ ≤ n and ‖ν‖ ≤ m. It also confirms these are compact sets.

We can conclude that when we are in the space of mixed strategies where the payoff is convex-concave and the sets
of strategies are convex, Sion’s theorem can be seen as a generalization of the Nash’s equilibrium within specific
settings. Therefore, we want to work in such a space (that complies with Sion’s theorem) since it will always have a
Nash equilibria which is exactly what we want. This opens the door to questioning how min-max theorem applies to
a GAN environment where functions are not convex-concave.

2.1.1 Nash equilibria for linear WGAN min-max game

The previous section was a motivation to apply such concept to GANs. As an example, in the current section, we will
define a WGAN within the settings we defined in the previous section.

Let’s first start with the definition of the WGAN:

L(θ, φ) = min
θ

max
φ

Ex∼pd [Fφ(x)]− Ez∼pz [Fφ(Gθ(z))]
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We first define the linear discriminator and generator as:

Fφ(x) = φ · x , Gθ(z) = θ1z + θ2 where z ∼ N (0, 1)

Which means:
L(φ, θ) = Ex∼pd [φ · x]− Ez∼pz [φ(θ1z + θ2)]

By linearity and by applying the expectation on z, we get:

min
θ

max
φ

φ · (Ex∼pd [x]− θ2) (4)

Therefore we understand that the goal of this game is to match the means (since we can see that θ2 is the mean of the
generated variable) and that the Nash equilibria is achieved when θ2 equals the mean of x. Finally, we can prove that
this is a Nash:

L(θ, φ) = φ · (µ− θ) where µ = Ex∼pd [x]

Taking the gradients of the above function with respect to our parameters, we get:

∇θL(φ, θ) = −φ ,∇θL(φ, θ) = µ− θ

Equalling these two values to zero implies:
φ∗ = 0 , θ∗ = µ

Finally, we can find the Nash equilibria definition by plugging the found value within the Nash equilibria definition:

0 = L(θ∗, φ) ≤ L(θ∗, φ∗) = 0 ≤ L(θ, φ∗) = 0 , ∀(θ, φ)

Which confirms we found a Nash.

2.2 Solving the game
By translation of θ, we can reformulate Equation 4 as:

min
θ

max
φ

θ · φ

Result 4 (The Nash equilibrium of this game is (0,0)).

Proof. This is easy to see. If θ chooses 0, then φ has no strictly better solution than playing 0. The same argument
works the other way around.

We will now explore different methods for solving the game, and observe if they converge to the Nash equilibrium.

(a) Sim-GDA (b) Alt-GDA (c) PPM

Figure 1: Exploration of different update rules: (a) Simultaneous Gradient Descent-Ascent (b) Alternated Gradient
Descent-Ascent (c) Proximal Point Method
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2.2.1 Simultaneous Gradient Descent-Ascent

We can now solve this simple bi-linear game with gradient-based method. Since ∇θ(θ · φ) = φ and ∇φ(θ · φ) = θ,
we obtain that the gradient descent steps are: {

θt+1 = θt − ηφt
φt+1 = φt + ηθt

(5)

By observing the dynamic of these updates presented in Figure 1(a), we can see that the parameters diverge instead of
converging to the solution (0, 0). We can prove this formally.

Result 5 (Sim-GDA diverges). We have

θ2
t + φ2

t = ρt(θ2
0 + φ2

0) > (θ2
0 + φ2

0)

where ρ = 1 + η2 > 1. Note that for η = 0, there are no updates.

Proof. We observe the squared L2-norm for (θ, φ) at time t, that we call Lt = θ2
t + φ2

t . We have:

Lt+1 = θ2
t+1 + φ2

t+1

= (θt − ηφt)2 + (φt − ηθt)2 using Equation 5

= θ2
t + φ2

t − 2ηθtφt + η2φ2
t + 2ηφtθt + η2θ2

t by developing

= Lt + η2Lt after canceling and regrouping

= (1 + η2)Lt

= (1 + η2)t+1L0

So far, we have only looked at η = η1 = η2. However, the usage of different η is useful for different loss functions
that may have different scales. We can show the analog result for different step-size.

Result 6 (Sim-GDA diverges even with different step sizes). We still have

θ2
t

η1
+
φ2
t

η2
=
θ2

0

η1
+
φ2

0

η2
+ η1

t−1∑
t′=0

φ2
t′−1 + η2

t−1∑
t′=0

θ2
t′−1 >

θ2
0

η1
+
φ2

0

η2

for the update rule {
θt+1 = θt − η1φt

φt+1 = φt + η2θt

Note that for η1 = η2 = 0, there are no updates.

Two proofs are possible to show the previous result:

Proof. (#1). After rescaling θ and φ, we have:

Lt+1 =
θ2
t+1

η1
+
φ2
t+1

η2

=
(θt − ηφt)2

η1
+

(φt − ηθt)2

η2
using Equation 5

=
θ2
t

η1
+ η1φ

2
t − 2θtφt +

φ2
t

η2
+ η2θ

2
t + 2θtφt by developing

= Lt + η1φ
2
t + η2θ

2
t after canceling and regrouping
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Proof. (#2). By analyzing the eigenvalues of this problem we can also see the divergence as well. First, we got the
matrix representation of the update rule as being:

wt+1 =

(
θt+1

φt+1

)
=

(
1 −η1

η2 1

)(
θt
φt

)
= Awt

Let assume that ∃λ, s.t.|λ| > 1, λ+ Sp(A), then ∃x, s.t.Ax = λx. From this, we can see that:

||wt+1|| = ||Awt|| = |λ|t+1||w0||

Since |λ| > 1, we can easily see that this is diverging as t→∞.

In regards to the relationship between η1 and η2, we can see that:

Trace(A) = λ1 + λ2 = 2

det(a) = λ1λ2 = 1 + η1η2 > 1

We notice that increasing η implies a faster divergence. As we can see in Figure 2, it makes sense because the vector
field we are following in green is tangent to the circle. We cannot get inside the circle which is a necessary condition
for converge (as shown with the purple arrow). Moreover, since we are doing discrete steps, we will overshoot (red
arrow) and thus increase the norm, which will eventually go to infinity.

Figure 2: The gradient may point to a direction (red arrow) that pushes the iterate away from the Nash Equilibrium
(red star). Figure from [2].

This diverging behaviour happens not only for the studied example. It happens in particular for all games that can be
formulated with payoff L(θ, φ) = θTAφ, where A ∈ Rn×m. But since many games from the WGAN setting have an
objective function of that form around the optimum by doing Taylor expansion, this problematic behaviour arises for
several games by using gradient methods. This is proven formally in [6], and we give an overview of the proof in the
following discussion.

Assuming we are in the WGAN setting, where

L(θ, φ) = Epd [fφ(x)]− Epz [fφ(Gθ(x))]

And φ? is such that fφ?(x) = 0 ∀x, and θ? is such that G generates the real data distribution. If the pair (θ, φ) is close
enough from the optimum (θ?, φ?), we can use Taylor expansion to show that:
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L(θ, φ) ∼ L(θ?, φ?) +∇L(θ?, φ?)T
(
θ − θ?
φ− φ?

)
+∇2L(θ?, φ?)T

(
θ − θ?
φ− φ?

)
= L(θ?, φ?) + J

(
θ − θ?
φ− φ?

)
since ∇L(θ?, φ?) = 0

Where

J = ∇2L(θ?, φ?)T =

(
∇2
θL(θ?, φ?) ∇φ∇θL(θ?, φ?)

∇θ∇φL(θ?, φ?) ∇2
φL(θ?, φ?)

)
=

(
0 ∇φ∇θL(θ?, φ?)

∇θ∇φL(θ?, φ?) 0

)
and the top left 0 comes from the fact that L(θ, φ?) = 0 ∀θ, while the bottom right 0 arises under certain assumptions
detailed in [6].

We can now approximate the update from the gradient method as follows:(
∇θL(θ, φ)
−∇φL(θ, φ)

)
∼ J̃

(
θ − θ?
φ− φ?

)
=

(
AT(φ− φ?)
−A(θ − θ?)

)
(6)

Where

J̃ =

(
0 ∇θ∇φL(θ?, φ?)

−∇φ∇θL(θ?, φ?) 0

)
=

(
0 AT

−A 0

)
under certain assumptions detailed in [6].

We can find back in Equation 6 the form θTAφ discussed previously and for which the gradient method diverges. [5]
discusses the assumptions made above, and general convergence for different training methods in GANs.

2.2.2 Alternating Gradient Descent-Ascent

Now, when implementing the previous algorithm in practice (Simultaneous Gradient Descent-Ascent), the update of
the parameters, θ, φ, are done sequentially. That means that if we first update θt and then we update φt, the second
parameters being updated (φ) is using the update of the other parameters (θt+1) in its calculation of the gradient. This
behavior introduce well the second approach which is the alternating gradient descent-ascent.

Formally, we can define the parameters’ update as:{
θt+1 = θt − ηφt
φt+1 = φt + ηθt+1

(7)

An illustration of the convergence results of this approach is shown in 1(b).

Result 7 (Alt-GDA is not converging and show stationnary behavior).

Proof. The proof is similar to the one from the SDA algorithm.

(
θt+1

φt+1

)
=

(
θt − ηφt
φt + ηθt+1

)
⇐⇒

(
θt+1

φt+1 − ηθt+1

)
=

(
θt − ηφt
φt

)
We can represent the above equation by another matrix representation:(

1 0
−η 1

)(
θt+1

φt+1

)
=

(
1 −η
0 1

)(
θt
φt

)
Now, we can inverse the left hand side to get only the t+ 1 expressions.

wt+1 =

(
θt+1

φt+1

)
=

(
1 0
η 1

)(
1 −η
0 1

)(
θt
φt

)
=

(
1 −η
η 1− η2

)(
θt
φt

)
= Awt
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When looking at the determinant of A, we get that

det(A) = λ1λ2 = 1− η2 + η2 = 1

Finally, we can write that:

||wt|| = ||Atw0|| ≤ ||At||||w0|| = ||PDtP−1||||w0|| ≤ maxi(|λi|)t||w0|| ≤ c||w0||

It is now bounded by a constant independent from t which proves the result. For a more formal proof, you can look at
Gidel et al. [3].

2.2.3 An improved Gradient Descent: the Proximal Point Method

The last method has the following form: {
θt+1 = θt − ηφt+1

φt+1 = φt + ηθt+1

(8)

An illustration of the convergence results of this approach is shown in 1(c).

Result 8 (Proximal-Point Method converges). We have

θ2
t + φ2

t = ρt(θ2
0 + φ2

0) < (θ2
0 + φ2

0)

where ρ = 1
1+η2 < 1. Note that for η = 0, there are no updates.

Proof. Let us start by finding an explicit form for the updates:{
θt+1 = θt − ηφt+1 = θt − η(φt + ηθt+1)

φt+1 = φt + ηθt+1 = φt + η(θt − ηφt+1)
(9)

which leads to {
(1 + η2)θt+1 = θt − ηφt
(1 + η2)φt+1 = φt + ηθt

(10)

We observe the squared L2-norm for (θ, φ) at time t, that we call Lt = θ2
t + φ2

t . We have:

Lt+1 = θ2
t+1 + φ2

t+1

= (
θt − ηφt
1 + η2

)2 + (
φt + ηθt
1 + η2

)2

=
1

(1 + η2)2

(
θ2
t + φ2

t − 2ηθtφt + η2φ2
t + 2ηφtθt + η2θ2

t

)
=

Lt
(1 + η2)

=
L0

(1 + η2)t+1

In practice, this problem is harder than what we have introduced because the gradients are not necessarily linear and
the behavior is not trivial. In conclusion, we have experience on very simple games to evaluate the different methods
and we have shown that the promising one was the proximal point method but this method is not deemed practical.
Next week, we will see an explicit method (extra-gradient methods) that is similar to the proximal method.
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