
IFT 6756 - Lecture 7
Generative Adversarial Networks

February 9, 2021
This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor.

Scribes: William Neveu, Olivier Tessier-Larivière, Tianyu Zhang Instructor: Gauthier Gidel

1 Summary
In this lecture we introduce generative models, and in particular the use of generative adversarial networks (GANs).
In order to paint a big picture of generative models, we will first show how the log-likelihood is used to evaluate
generated data but fails in high dimension. This motivates the use of implicit distribution techniques, which GANs are
part of. We will go into more details on the GAN objective function, as well as introduce GAN extensions, such as
conditional GAN.

2 Supervised and Unsupervised learning
As we already know, supervised learning refers to techniques that learn to predict an output label y, given a new and
unlabeled input x. They learn from a set of labeled observations (xi, yi), i = {1, ..., n}.

On the other hand, unsupervised learning does not have access to labels yi. Instead its objective can be :

• Clustering

• Dimensionality reduction

• Feature learning

• Density estimation

3 Generative Modeling
Generative modeling is a form of unsupervised learning. Its goal is to estimate the data distribution. Figure 1 shows an
example of density estimation. For lower dimensions, the Maximum Likelihood Estimation is an acceptable approach.
However, it suffers from the curse of dimensionality.

Definition 1 (Maximum Likelihood Estimation).

max
θ

n∏
i=1

pθ(xi)

1

IFT 6756 - Game Theory and Machine Learning Lecture 7: Feb. 9, 2021

Figure 1: Negative log-likelihood predicted by a Gaussian Mixture Model (GMM). Image from scikit-learn.org.

3.1 Log-Likelihood
In practice, we maximize the log-likelihood instead of the likelihood. Since log is monotonically increasing, max-
imising the likelihood is equivalent to maximizing the log-likelihood. As we can see in definition 2, the maximum
log-likelihood contains a sum instead of a product because of the properties of the log. This simplify the optimization
because be can now maximize each term individually.

Definition 2 (Maximum log-likelihood).

argmax
θ

n∏
i=1

pθ(xi)

= argmax
θ

n∑
i=1

log pθ(xi)

Generating realistic samples is surprisingly not necessary to obtain a large log-likelihood [8, 9]. Assume pdata corre-
sponds to a density model that is very good (e.g. gets a high likelihood), while q corresponds to a bad model (e.g.
noise). At example 3, we define the mixture model pθ and show that it has a good log-likelihood although it is sampling
from the bad model 99% of the time.

Example 3 (Large Log-Likelihood but Poor Samples [8]).

pθ(x) = 0.01pdata(x) + 0.99q(x)

log pθ(x) = log [0.01pdata(x) + 0.99q(x)]

≥ log [0.01pdata(x)]

≥ log pdata(x)− log 100

log pdata is proportional to the dimensionality of x while log 100 stays constant. For high-dimensional data such as
images, log 100 is negligible [7].

Now, let’s show that the log-likelihood scales with d. However, let us first define what it is for a function to be
L-Lipschitz continuous with respect to the `∞ norm.

Definition 4 (L-Lipschitz continuous). For a function f to be L-Lipschitz continuous over a space X with respect to
the `∞ norm, f must satisfy :

|f(x)− f(y)| 6 L ||x− y||∞

for all x, y ∈ X .

2

IFT 6756 - Game Theory and Machine Learning Lecture 7: Feb. 9, 2021

Proposition 5 (Log-Likelihood Scales with d). Under the assumption that X is [0, 255]d (for instance images with
integer pixel values), and that the density log p(x) (p can either be pdata or pθ) is L-Lipschitz with respect to the `∞
norm we have that,

log(p(x)) ≤ L− d log(2) (1)

Proof. The idea is very, simple. Since p is L-Lipschitz continuous we have that for all image x′ such that |xi − x′i| ≤
1 , i ∈ {1, . . . , d},

log(p(x))− L ≤ log(p(x′))⇐⇒ p(x)e−L ≤ p(x′) (2)

and thus since X is discrete we have

e−L
∑

x′ , ‖x−x′‖∞≤1

p(x) ≤
∑

x′ , ‖x−x′‖∞≤1

p(x′) ≤
∑
x∈X

p(x) ≤ 1 (3)

Which leads to (since there at least 2d element in B(x, 1) := {x′ ∈ [0, 255]d , ‖x− x′‖∞ ≤ 1}),1

e−L2dp(x) ≤ 1⇐⇒ log p(x) ≤ L− d log(2) (4)

The L-lipschitz assumption on x 7→ log p(x) comes from the intuition we have with adversarial examples: for CIFAR
images with pixel values in [0, 255] changing the pixel values of ±1 of a given image gives a new image that visually
looks the same and thus has roughly the same likelihood (’roughly the same’ is formalized with the Lipchitz assumption
as ’up to a factor’ eL).
As shown in equation 10 of [8], it is also possible to have a poor Log-Likelihood while having great looking samples.

Example 6 (Poor Log-Likelihood and Great Looking Samples [8]). Consider the following mixture of Gaussian.

pθ(x) =
1

n

n∑
i=1

N (x;xtraini , δId)

Let us assume that it has memorized the training set. As the Gaussians are more and more centered on each example
of the training set, δ → 0 and thus pθ(x)→ 0. This means that the log-likelihood goes to −∞.

As seen in examples 3 and 6, the log-likelihood is not sufficient to evaluate generative models in high dimensions.

4 Taxonomy of Generative models
As we can see in Fig. 2, generative models are based on maximum likelihood, but they differ when it comes to explicit
or implicit density. In the former case, we try to to model and compute the density Pθ(x). In the latter, we never
actually have the value the data distribution of Pθ(x), but are able to sample from it, as is explained in section 4.2.

4.1 Standard Technique using Explicit Density

pmodel(x) = pmodel(x1)

d∏
i=2

pmodel(xi|x1, ..., xi−1)

The idea behind the standard technique using explicit density is to generate features one by one. First, generate x1.
Then knowing x1, generate x2. Next, knowing x1 and x2, generate x3 and so on. Although the generated data can be
good (see PixelRNN [10] and PixelCNN [11] (figure 3)) this technique comes at a cost :

• Algorithms are O(d) (very slow).

• It is not known what is the best order for parameter generation. They may be hand-picked.

• There is no latent space.

1Note that most of the time there is 3d elements in B(x, 1). There is less element only when x has pixel with extremal values: 0 or 255

3

IFT 6756 - Game Theory and Machine Learning Lecture 7: Feb. 9, 2021

Figure 2: Taxonomy of Generative Models. Image reproduced from [2].

Figure 3: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for the next pixel.
To generate pixel xi the model can only condition on the previously generated pixels x1, ...xi1. Middle: an example
matrix that is used to mask the 5x5 filters to make sure the model cannot read pixels below (or strictly to the right) of
the current pixel to make its predictions. Right: Top: PixelCNNs have a blind spot in the receptive field that can not
be used to make predictions. Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive
field. Figure and description reproduced from [11]

4.2 Implicit density
x ∼ pθ ⇐⇒ x = gθ(z), z ∼ pz

Instead of having to model the actual distribution of generated data pθ in order to sample from it, implicit density
techniques propose to sample from an easy to sample distributions pz , such as a Gaussian. This sample, z is then
transformed by a generator function gθ, into an example x belonging to the data distribution pθ.

5 GAN objective function
In GANs, we have both a generator and a discriminator fighting over the following binary cross entropy classification
task. As we can see, the generator wants to minimize it, fooling the discriminator with realistic data. Meanwhile,
the discriminator wants to maximize the objective, separating real from generated samples. We can easily see from
the mathematical formulation that this task is in fact a zero-sum game between the generator and the discriminator.
Fooling the discriminator is a win for the generator and a loss for the discriminator, and vice-versa.

4

IFT 6756 - Game Theory and Machine Learning Lecture 7: Feb. 9, 2021

Definition 7 (GAN objective function).

min
G

max
D

Ex∼pdata
[log(D(x))] + Ez∼pz [log(1−D(G(z)))]

Definition 8 (Payoff function).

ϕ(D,G) = Ex∼pdata
[log(D(x))] + Ez∼pz [log(1−D(G(z)))]

In order to prove that ϕ(D,G) has a Nash Equilibrium, we need to prove the following property:

ϕ(D,G*) ≤ ϕ(D*, G*) ≤ ϕ(D*, G)

Proof.

First, let’s show that
ϕ(D,G*) ≤ ϕ(D*, G*)

where G*| pg = pdata, and D*(x) = 1
2 ∀x, as the best discriminator can only do a coin-flip when G = G*

ϕ(D,G*) = Ex∼pdata
[log(D(x))] + Ex∼pg [log(1−D(x))]

= Ex∼pdata
[log(D(x))] + Ex∼pdata

[log(1−D(x))]

= Ex∼pdata
[log(D(x)) + log(1−D(x))]

= Ex∼pdata
[log(D(x)(1−D(x))]

≤ Ex∼pdata
[log(D*(x)(1−D*(x))]

Substituting D*(x) = 1
2

≤ Ex∼pdata
[log(

1

2
(1− 1

2
))]

≤ Ex∼pdata
[log(

1

4
)]

≤ log(
1

4
)

≤ ϕ(D*, G*)

Next, let’s show that
ϕ(D*, G*) ≤ ϕ(D*, G)

ϕ(D*, G) = Ex∼pdata
[log(D*(x))] + Ex∼pg [log(1−D*(x))]

Substituting D*(x) = 1
2

= Ex∼pdata
[log(

1

2
)] + Ex∼pg [log(

1

2
)]

= log(
1

4
) ∀G

Therefore, we have

ϕ(D,G*) ≤ ϕ(D*, G*) = ϕ(D*, G)
ϕ(D,G*) ≤ ϕ(D*, G*) ≤ ϕ(D*, G)

5

IFT 6756 - Game Theory and Machine Learning Lecture 7: Feb. 9, 2021

6 GAN: a Trivial Game ?
Exactly memorizing the train set seems optimal for the generator because the true data comes from the train sets. So
if the fake data also comes from the train sets, the discriminator has no way to distinguish the two. Why this does not
happen? It’s because the generator never truly touch the training sets. (The target problem of the generator is shown

Figure 4: A simple process of the GAN train.

below. It only receives outputs from the discriminator.) It only receives information from the discriminator which only
tells yes or no. It hard even for human to reproduce what the discriminators have in mind. Thus, the generator can
generate something close to the training sets but not exact training sets because it is never able to access the training
sets.

G∗ = argmin
G

Ez∼pz [log(1−D(G(z)))]

Overall it does not completely explain why generator usually do not generate pictures from the train set but it give the
intuition on why copying the training set is roughly as hard as to generate new images for the generator.

7 Non-Zero Sum Game
Definition 9 (Zero Sum Formulation).

minGmaxD Ex∼pdata [log(D(x))] + Ez∼pz [log(1−D(G(z)))]

Definition 10 (Non-zero Sum Formulation).

minD −Ex∼pdata [log(D(x))]− Ez∼pz [log(1−D(G(z)))]
minG−Ez∼pz [log(D(G(z))]

For the generator in the zero sum formulation, the first term ,Ex∼pdata [log(D(x))], actually does not contribute to the
gradient of minimizing G. Thus, G∗ = argminG Ez∼pz [log(1−D(G(z)))].

In the case of non-zero sum formulation, we changed the above target to G∗ = argminG−Ez∼pz [log(D(G(z))] be-
cause it gives stronger gradient at early learning phases. To explain this specifically, the discriminator always started
from showing False to the generator, i.e. D(G(z)) should be around 0 at first. However, in the zero sum formulation,
the target function is around log(1−D(G(z))), D(G(z)) ≈ 0. In the non-zero sum formulation, on the contrary, the
target function is around − log(D(G(z))), D(G(z)) ≈ 0 which gives very strong gradient. This intuition is provided
by one of the author of the author of the original GAN, Goodfellow. However, people later find that the zero sum
formulation also works.

In addition, the process of calculating the equilibrium of the non-zero sum formulation is basically the same as the the
zero sum formulation one which we talked about before. The discriminator implicitly developed a metric between the
data distribution and the generated distribution (KL divergence). The distance between them is exactly what generator
want to minimize.

6

IFT 6756 - Game Theory and Machine Learning Lecture 7: Feb. 9, 2021

Figure 5: Comparing the gradient in the non-zero sum formulation and zero sum formulation.

Specifically, if we plug in the equilibrium of the discriminator x to the original target function, we will get:

Ex∼Pr
log

Pr(x)
1
2 [Pr(x) + Pg(x)]

+ Ex∼Pg
log

Pg(x)
1
2 [Pr(x) + Pg(x)]

− 2 log 2 =2JS (Pr‖Pq)− 2 log 2

where JS (P1‖P2) =
1
2KL

(
P1‖P1+P2

2

)
+ 1

2KL
(
P2‖P1+P2

2

)
KL (P1‖P2) = Ex∼P1 log

P1

P2

8 Conditional GAN
In conditional GANs [6], we want to generate images from a conditional probability distribution. Both the generator
and the discriminator are conditioned based on the type of the image that one wants to generate. The difference
between this framework and a normal GAN is that an additional condition is added to the input and the output is
trained to fit this condition, as shown at figure 6 (top). Figure 6 (bottom) shows a particular conditional GAN called
pix2pix [4] which does image to image translation.

9 Further reading and references

9.1 Why generative Modeling?
One motivation for generative modeling is unsupervised learning. More precisely, we can use generative models to
learn meaningful latent features. For example, BiGAN [1] (figure 8) introduces an encoder that maps real examples to
the GAN latent space. The encoder is trained by the discriminator, which now discriminates not only in data space but
jointly in data and latent space.
Another application of deep generative modeling is super-resolution, where the task is to increase the resolution of a
picture. Figure 7 shows the results of HiFaceGAN [12], increasing the resolution of a portrait.

9.2 The main Deep Generative Models
One of the main family of deep generative models are GANs [3], which were the subject of lecture 7. However,
other popular generative models include auto-regressive models like PixelRNN [10] and PixelCNN [11] as well as
variational autoencoders (VAE) [5].

7

IFT 6756 - Game Theory and Machine Learning Lecture 7: Feb. 9, 2021

Figure 6: Conditional GAN [6] (top) and pix2pix [4] (bottom)

Figure 7: HiFaceGAN generated samples (bottom) [12]

Figure 8: The structure of Bidirectional Generative Adversarial Networks (BiGAN) [1]

8

IFT 6756 - Game Theory and Machine Learning Lecture 7: Feb. 9, 2021

References
[1] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial feature learning, 2017.

[2] I. J. Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. CoRR, abs/1701.00160, 2017. URL
http://arxiv.org/abs/1701.00160.

[3] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial networks, 2014.

[4] P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks,
2016. URL http://arxiv.org/abs/1611.07004.

[5] D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2014.

[6] M. Mirza and S. Osindero. Conditional generative adversarial nets, 2014. URL http://arxiv.org/abs/
1411.1784.

[7] A. Oord and J. Dambre. Locally-connected transformations for deep gmms. In ICML 2015, 2015.

[8] L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models, 2016.

[9] A. van den Oord and J. Dambre. Locally-connected transformations for deep gmms. In International Conference
on Machine Learning (ICML) : Deep learning Workshop, Abstracts, pages 1–8, 2015. URL https://sites.
google.com/site/deeplearning2015/20.pdf?attredirects=0.

[10] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural networks, 2016.

[11] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and K. Kavukcuoglu. Conditional image
generation with pixelcnn decoders, 2016.

[12] L. Yang, C. Liu, P. Wang, S. Wang, P. Ren, S. Ma, and W. Gao. Hifacegan: Face renovation via collaborative
suppression and replenishment, 2020.

9

http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
https://sites.google.com/site/deeplearning2015/20.pdf?attredirects=0
https://sites.google.com/site/deeplearning2015/20.pdf?attredirects=0

	Summary
	Supervised and Unsupervised learning
	Generative Modeling
	Log-Likelihood

	Taxonomy of Generative models
	Standard Technique using Explicit Density
	Implicit density

	GAN objective function
	GAN: a Trivial Game ?
	Non-Zero Sum Game
	Conditional GAN
	Further reading and references
	Why generative Modeling?
	The main Deep Generative Models

