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“Creating noise from data is easy; creating data from noise is generative modeling.” 
Song et. Al 2020



Types of Generative Models

• Fully-observed models


• Latent Variable Models


• Prescribed Models: Likelihood + noise


• Implict Models (Likelihood-free)


• Score Matching
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Fig Credit: Song et. Al 2021



Evaluating Generative Models

Fig Credit: Theis et. al 2016



Evaluating Generative Models

Avoids assigning extremely small probability to any 
data point but assigns a lot of probability mass to 

non-data regions.
Fig Credit: Theis et. al 2016



Evaluating Generative Models

Fits one mode really well but ignores other parts of the 
data

Fig Credit: Theis et. al 2016



Evaluating Generative Models

Different Evaluation Mesures have 
Different Tradeoffs!

Fig Credit: Theis et. al 2016
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Key question: What is the task you care about?


• Density Estimation

• Sampling/Generation

• Semi-supervised Learning

• Learning useful representations

• Anomaly Detection

• Hybrid Modeling

• Calibration
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Evaluating Generative Models

Key question: What is the task you care about?


• Density Estimation

• Sampling/Generation

• Semi-supervised Learning

• Learning useful representations

• Anomaly Detection

• Hybrid Modeling

• Calibration


Most research papers  
do this

Others claim their models 
 do a good job of this

Hope we will  
magically do well on these.

How much progress have we actually made on these tasks?



Explicit Likelihood Models for Anomaly Detection
So you have an explicit likelihood model and you want to do Anomaly 
Detection? Should be simple right?


Problem Definition
• Input space 

• Partitioning 

• 

Pick  such that it contains “the majority” of the mass

e.g.  

𝒳 ⊆ ℝD

𝒳in ∪ 𝒳out = 𝒳
𝒳in ∩ 𝒳out = ∅

𝒳in
P*X (𝒳in) = 1 − α ∈ (0.5,1)

Fig Credit: Le Lan and Dinh 2021



Approaches for Anomaly Detection
Density Scoring

Unlikely samples should have “low” likelihood —i.e. low 

A heuristic is to define inliers as points whose density is greater than a 
threshold  

p*X (x)

λ > 0

Fig Credit: Le Lan and Dinh 2021



Approaches for Anomaly Detection
Typicality Test
Inliers are part of typical set —-i.e. points whose average log density is 
close to the average log-density of the distribution . Loose 
definition, the typical set of points satisfy: 

λ > 0
A(N)

ϵ (p*X ) ⊂ 𝒳N

Fig Credit: Le Lan and Dinh 2021

H(p*x) +
1
N

N

∑
n=1

log p*X (x(n)) ≤ ϵ



Approaches for Anomaly Detection
Assume we have trained the perfect density model under infinite data 
and capacity: p(θ)

X = p*X
The observed data is a chosen representation of the real data and should 
remain invariant under an invertible map  (There is no loss of information).f

(c* ∘ f−1)( f(x))c*(x)
Perfect Classifier on X Perfect Classifier on f(X)



Approaches for Anomaly Detection
Principle. In an infinite data and capacity setting, the result of an 
anomaly detection should be invariant to continuous reparametrization.

 remains a low probability subset as 𝒳out
PX(𝒳out) = Pf(X)( f(𝒳out)) and ∀x ∈ 𝒳, x ∈ 𝒳out ⟺ f(x) ∈ f(𝒳out)

p*f(X)( f(x)) = p*X (x)
∂f

∂xT
(x)

−1

Change density under an invertible map

Fig Credit: Le Lan and Dinh 2021



Anomaly Detection: Uniformization
Under weak assumptions one can map any distribution to an uniform 
one with an invertible map .  is constant everywhere.fKR p*f (KR)(X) = 1

∀d ∈ {1,⋯, D}, f (KR)(x) = CDFp*xd|X<d
(xd |x<d)

Change density under an invertible map

Fig Credit: Le Lan and Dinh 2021



Anomaly Detection: Arbitrary Score
Proposition 1(Le Lan and Dinh 2021). For any R.V.  with  
continuous strictly positive (with convex) and any measurable continuous 
map  bounded below by a strictly positive number, there exists 
a continuous bijection  s.t. 

X ∼ p*X p*X
𝒳

s : 𝒳 → ℝ*+
f (s) x ∈ 𝒳, pf (s)(X)( f (s)(x)) = s(x)

Fig Credit: Le Lan and Dinh 2021



Hybrid Modeling 
What if we want to use generative models for discriminative tasks?

log p(x, y) = log p(y |x) + log p(x)
Discriminative part

Generative Part

The discriminative part will assign a score to any input even if the point is 
actually not part of the data distribution. Can we balance this with the 
generative part? Can we use any pre-trained generative model to help here?



Hybrid Modeling: Naive Approach 
If the discriminative and generative parts were trained separately we 
have:

log p(x, y) = log pθ1
(y |x) + log pθ2

(x)
Discriminative part

Generative Part

x

NN1 NN2
Operationally we can use  

separate networks



Hybrid Modeling: Naive Approach 
If the discriminative and generative parts were trained separately we 
have:

log p(x, y) = log pθ1
(y |x) + log pθ2

(x)
Discriminative part

Generative Part

x

NN1 NN2

There is no information flow between  
 and . There is no reason each 
NN treats  in the same way!

x y
x



Hybrid Modeling 
What if we share parameters

log p(x, y) = log pθ1,γ(y |x) + log pθ2,γ(x)
Discriminative part

Generative Part

x

NN1 NN2

NNγ



Hybrid Modeling: Parameter Sharing 
If  is a binary label it needs only 1 bit while for a -dim  vector we 
need at least as many bits.

y D x

∇γlogp(x, y) = ∇γlog pθ1,γ(y |x) + ∇γlog pθ2,γ(x)

Let’s also assume that the output of both discriminative and generative 
nets is 0.5. What is the 

log pθ1,γ(y |0.5) = y log 0.5 + (1 − y)log 0.5



Hybrid Modeling: Parameter Sharing 

log Bern(y |0.5) = y log 0.5 + (1 − y)log 0.5
= − log 2

log
D

∏
i

Bern(xd |0.5) =
D

∑
i

log Bern(xd |0.5)

= − D log 2



Hybrid Modeling: How do we fix this?
• Convex combination of the two objectives (Bouchard & Triggs, 2004)

• Up weight the generative part by a positive factor  (Nalisnick et 

al., 2019)

• Use an invertible network and a learned flow prior (Chen et al., 2019)

λ ≥ 0

Take home message: If this is your end downstream task it can’t be 
treated as two separate problems. The generative modelling part must 
be tightly coupled with the end task!



Generative Models as Lossy Compression
Shannon’s fundamental compression theorem states that we can 
compress a random variable  losslessly at . That is a 
good generative model should be able to “transmit” a coded input with 
a rate close the entropy for optimal reconstruction. 
 
 
What about lossy compression? Suppose we allow a compression rate 

 using a code  and have a lossy reconstruction . 
What is the tradeoff now?

x ∼ p(x) ℋ(x)

R ≤ ℋ(x) z ̂x = f(z)



Generative Models as Lossy Compression
Given a distortion threshold  Shannon’s rate distortion theorem states 
that the rate distortion function  equals the minimum of the 
following:

D
ℛ(D)

min
q(z|x)

ℐ(x, z) s . t . 𝔼q(x,z)[d(x, f(z))] ≤ D

The encoder distribution or 
 “approximate posterior”

Joint distribution





Lossy Compression in VAE’s
We can modify the formalism of rate distortion theory to match the 
generative model formalism

ℐ(x, z) ≤ ℐ(x, z) + KL(q(z) | |p(z))

“approximate posterior”

= 𝔼pd(x)[KL(q(z |x) | |p(z))]

min
q(z|x)

𝔼pd(x)[KL(q(z |x) | |p(z))] s . t . 𝔼q(x,z)[d(x, f(z))] ≤ D

Variational Rate Distortion function: ℛp(D)



We can change the constrained optimization using the method of long-
range multipliers:

min
q(z|x)

𝔼pd(x)[KL(q(z |x) | |p(z))] + β𝔼q(x,z)[d(x, f(z))] ≤ D

Lossy Compression in VAE’s

min
q(z|x)

𝔼pd(x)[KL(q(z |x) | |p(z))] s . t . 𝔼q(x,z)[d(x, f(z))] ≤ D

Independent optimization problems for each x



Rate Distortion Curves

Fig Credit: Huang et. al 2020

•  is an upper bound for any prior on 


•  which means for any  there’s an optimal prior
ℛp(D) ℛ(D)
ℛ(D) = min

p(z)
ℛ(D) β



Rate Distortion Curves

Fig Credit: Huang et. al 2020

•  are 2-d gen models with 1-d latent code. 

• Conditional likelihoods are the grey curves and coloured dots are 

prior samples

•  have the same prior but different decoder

p1(x), p2(x) and p3(x)

p1(x) and p2(x)



Rate Distortion Curves: GANs

Fig Credit: Huang et. al 2020

• Increasing the code size has the effect of extending the curve leftward. High-rate 
regime is effectively measuring reconstruction ability and a larger code size helps with 
this.


• Increasing the depth pushes the curves down and to the left. Capacity helps the 
network make better use of the information in code space




What about Disentanglement?
Principle. A disentangled representation should separate the distinct, 
informative factors of variations in the data (Bengio et. Al 2013)

2-step Generative Process: First, a multivariate latent random variable  
is sampled from a distribution .  corresponds to semantically 
meaningful factors of variation of the observations. Then, in a second step, 
the observation  is sampled from the conditional distribution .

z
P(z) z

x P(x |z)

x

z



What about Disentanglement?

Unsupervised Disentanglement is impossible (Locatello et. Al 2019)! 
 
Strong statements but there are caveats. 



Interpreting the Impossibility result

Suppose you have disentanglement method that gives a representation  that 
is perfectly disentangled w.r.t to . Then there exists an equivalent generative 
model with latents  which is completely entangled and  
almost everywhere and thus the same martial distributions . Therefore, the 
disentanglement method cannot distinguish between the two generative models.

r(x)
z

̂z = f(z) p(z) = p( ̂z)
P(x)



Implications of the Impossibility result
Unsupervised disentanglement is impossible. But if you have 
inductive biases structure can be exploited for better disentanglement.

Visual Proof:  Which way is the 
baseball going? From this evidence 
alone there are multiple paths the 
baseball could take and each 
corresponds to a different generative 
model. The path of the ball cannot be 
disentangled without inductiv biases 
—i.e. flow of time. 



Definition (Informal Higgins et. Al 2018): A vector representation is called 
a disentangled representation to a particular decomposition of a symmetry 
group into subgroups, if it decomposes into independent subspaces, 
where each subspace is affected by the action of a single subgroup and 
the action of all other subgroups leave the subspace unaffected.

What if we had a different definition of Disentanglement?

∃b ∈ G

(a ∘ b) ∘ c = a ∘ (b ∘ c)

e ∈ G

∀a ∈ G

Groups

1.

2.

3.
a ∘ b = e

Identity 

Associativity 

Unique Inverses 



Symmetries in ML

Translation Invariance 
in image labelsShift



Symmetries in ML

1

2

4

3 2

1

4

3
Permute

Permutation 
Invariance in Node 
Labels in a Graph

Adjaceny Matrix



Symmetries in ML

Rotation Equivariance 
in image featuresRotation



Example: The dihedral group D4

e

r

r2

r3

s

rs

r2s
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r4 = e

s2 = e

srs = r−1



Basic facts on Representations

1. Two representation  and  are said to be equivalent ifR R′ 

 for some Unitary Matrix R′ (g) = UR(g)U† U

2. A representation  is said to be (completely) reducible ifR

R(g) =
R1(g)

R2(g)
U†U ( )



Complete Reducibility
Theorem. Let  be a representation of a compact group  on a vector 
space . If  fixes the subspace , then it also fixes .

R G
V R W W⊥

R(g) =
R1(g)

R2(g)
U†U ( )B(g)

B(g) = 0⟹

Corollary. Any representation of a compact group is reducible into a 
direct sum of irreducible representations. This is Maschke’s Theorem in 
the group is finite, and Peter-Weyl (part 2) for continuous.
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Conjecture
Joey’s Principle: Generative Models should focus on learning 
symmetries in data for disentangled representations.

Theorem 1. (Caselles-Dupré et. Al 2019) (Paraphrased): Symmetry 
based Disentanglement needs interaction with the environment

Free Research Idea: We can now solve the Anomaly Detection 
problem if we use symmetry based disentangled representations. If a 
data point is not represented as irreducible representations we simply 
decompose such that it is. We can then build any density model on 
these representations.



The False Dichotomy of Generative Models
Data Generative Model

Model Class —i.e. Implicit, 
Prescribed, Fully Observed

Learning Principle e.g. 
Variational, MLE, Contrastive

Algorithms e.g. VAE, GANs, 
RBM

Symmetry Group e.g. 
invariances, equivariances

Geometric Structure e.g. 
Riemannian manifold

Dataset curation: Size, 
diversity, and temporal
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Benefits of modelling data in a Generative Model
Example with Hyperbolic Geometry:

We quickly run out of space! Node Embedding Distance does not 
respect graph distance!

Embedding Hierarchies in Euclidean space

Fig credit: https://openreview.net/pdf?id=BJg73xHtvr 

https://openreview.net/pdf?id=BJg73xHtvr
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