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(:iame, ”\e,or\tj an(l Macl\ine, \.earninj

e Taughtin English
® - You can always ask questions in French.

e Evaluation: 100% Project



(:iame, H\e,or\tj an(l Macl\ine, \.earninj

e Project:

o Validation of the projects with a mid-term proposal/abstract. (Beginning of March)
o Project presentations at the end of the semester (Talk)+ Written report.
o Three kind of projects:

m - Paper critic. (Less risky)

m 'Open”projects among-the list. (More risky)

m Propose your own project. (More ambitious though I'll take it into account)



(:iame, H\e,or\tj an(l Macl\ine, \.earninj

e Allthe courses are recorded.
e | will put ashort{er)video to watch before the course.
e Fillthe google forms.

e (o thethe TEAMS group and ask questions there.



\/\”\an IS iJf ak)oujr.?

e (Game Theory: the study of mathematical models of strategic

interaction among rational decision-makers. [ Myerson, 1991]
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\/\”\an IS iJf ak)oujr.?

e (ame Theory: the study of mathematical models of strategic

interaction among retierat-decision-makers. [ Myerson, 1991]

+ Machine Learning

)

How to learn these strategic
behaviors!!!




\/\]e, wi” cover

(\)iasul h\j mJ Own iane,re,SJf )

Standard Game Theory
Standard ML

GANs

Optimization
Optimization of Games

Some Aspect of Multi-Agent RL



\/\Ie, wi” cover

(&)iasecl k)\tj m\j Own in+ere,sjf )

Standard Game Theory
Standard ML

GANS

Optimization
Optimization of Games

Some Aspect of Multi-Agent RL

Importance of the theory.
(See end of this course)



\’\Ie, wi” cover

(\)iaseo\ k)\tj m\j Own in+ere,sjf )

Importance of the theory.

Standard Game Theory (See end of this course)
Standard ML

GANs ‘Supposed” to be self contained.
Optimization (Undergrad math background “required

e LinearAlgebra
Optimization of Games e Functional analysis)

Some Aspect of Multi-Agent RL
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\/\”\o IS H\is uass 1for.?

Anyone who is interested in ML and Games.
Target audience:
o (raduate students with ML background.

Minimal math background is important to follow some parts of the

course.



Required BaCLjrounA

Exercices (not graded).

Prove some elementary results that will be used in the course.

It is the basic knowledge to:

o Read ML papers (related to that topic)

o Attend ML conferences (related to that topic too)
If exercices are too easy: GREAT (work on.your project)

If too hard: some pointers are provided.



\/\”\a{' \\jou can ﬁﬁF&C{'

A good grade? (Yes if you ask questions put some work on your project)
Learn new things!!!
Answers to your questions.

30-40 min Video.of the Lectures 3-4 days before the class
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\A”\ajf -[ ?JFQ;CJf {‘rom JOU

Watch the Video.

~

Do (try) the Exercices.

Ask Questions!

A serious project.

.

v

To be Active and make mistakes
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\A”\a{' -[ ?JFQ;CJf from JOU

Watch the Video.

~

Do (try) the Exercices.

Ask Questions!

A serious project.

.

v

To be Active and make mistakes
(If you don't | failed)
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I_I \A”\J (Jame,s.?

(Largely inspired from the Great NeurlIPS tutorial on learning
dynamics by Marta Garnelo, Wojciech Czarnecki and David Balduzzi,)
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If you have a large dataset, and you
train a very big neural network, then

success is guaranteed!

llya Sutskever
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Deep learning is just glorified curve fitting

Quora User 200384
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e

Quora User 20034

Deep learning is just glorified curve fitting

Optimization!
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e

Quora User 20034

Deep learning is just glorified curve fitting

“All the impressive achievements of deep

learning amount to just curve fitting,”

Judea Pearl (Turing award 2011)

Optimization!
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If you have a large-datasetardyoutrata
very-big-neural-network then success is

guaranteed!

llya Sutskever
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If you have the right objective and you
have enough capacity and compute, then

success is guaranteed!

(improved) llya Sutskever
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If'you have the right objective and you
have enough capacity and compute, then

success is guaranteed!

(improved) llya Sutskever

Optimizees: “Things that optimize”
(architecture, algorithms)

Objectives : “Target of the optimzation”

(data+loss, env+reward)

29



(nH inj { I\e, leI\Jf ije,cjrive,

Even assuming that the rest is solved (dream world)

e How to construct objectives?
e How to evaluate objectives?

e How to combine objectives?
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Consjrrucjrinj a TaSL

e Need to curate a dataset (MNIST, CIFAR, ImageNet)

e (R Need to build an environment (Atari, chess, Go, Starcraft |1)
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100-COSTLY

curating datasets or building
environments is labour

intensive)

Old label: pier Old labe
iL: dock: pier;

hammer

screwdriver:

speedboat; sandbar; hammer; power drill:
carpenter’s kit

seashore

[Beyer et al. 2020]

PROBLEMS

100 SIMPLE

Spurious correlations

[Sagawa et al. 2020]

Common groups
(low error)
FUUNUING s P

CelebA
162,770
training
examples

y: dark hair
a: male

Waterbirds
1,795

training
examples

Atypical groups
(high error)

y:
a: male

100 MANY

With a lot of task, easier
to cheat.

Source: deepmind.com
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Tasl(s are H\e main BOH' |e,ne,cl< mf Progress

Algorithms
(first proposed)

Datasets
(first available) Translation

Breakthrough in

Artificial Intelligence Jeopardy 2020

Image
classification

Figure from NeurlPS tutorial on learning dynamics by Marta Garnelo, Wojciech Czarnecki and David Balduzzi
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What about Guarantees???

Theoretical CS:
Algorithms have specific guarantees. (e.g. sorting,...)

Machine Learning:
We indirectly specify the task via an objective.

Learning Theory:

Formal “generalization” guarantees based on unrealistic
assumptions (e.q. train set == test set, i.i.d samples.,...)
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HO\N ‘[aSLS are EValuan&A?

« Why ImageNet? MNIST? (why vision?)

Science is a social thing.

No formal criteria to select the “most interesting” tasks. c
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How Tasl(s are Com\)inecl.?

Task 1 Task 2 Task 3
Agent 1 89 93 76
Agent 2 85 85 85

Agent 3 79 74 99

Table from NeurlIPS tutorial on learning dynamics by-Marta Garnelo, Wojciech Czarnecki and David Balduzzi
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How Tasl(s are Com\)ined?

Task 1 Task 2 Task 3 Task 3’ AVG
Agent 1 89 93 76 83.75
Agent 2 85 85 85 84.75

Agent 3 79 74 99 87.5

Averaging is a dangerous game.

Table from NeurlIPS tutorial on learning dynamics by Marta Garnelo, Wojciech Czarnecki and David Balduzzi
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Evolujrion s NOT (sinjle, o&)\'}ecjr ive) OFJf imizaJrion

Fitness is not a function of a single being.
Survival of the strongest.
Life is not a suite of tasks.
School is..., but in real life we do not average.
Rewards are crazily sparse.

(YOLO)
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\.earninj Ohjecjr ives

Learning

Do not want to hand-craft behavior.

Catch:-Learning from examples but lose behavioral guarantees.

Learning Representations

Do not want to hand-craft features.

Catch: Lose optimization guarantees (non-convex optim)
Learning Losses.

Do not want to hand-craft tasks.
Catch: Learn against another agent. Tasks: being the fittest

(e.g. GANs see Courses 4 to 8)
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Single player:

. B
el el e B 5

Hand-crafted notion of
performance

\_e,arninj ije,cjf ives

Multi-player:

APYAEYA RN A RS
HNaWD e

Very simple notion of performance
The complexity of the task
depends on the opponent(s)
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Acl\ie,vinj suFer-l\uman Fe,rwformance, in u\e,ss l\as &)e,e,n |on3 sjramlinj cl\a"e,nje,

[Shannon 1950] [Samuel1959] Deep Blue(1996) Deeper Blue (1997) [Campbell et al. 2002]

MATT
Programming Some studies in machine e
a computer for learning using the game KASPAROV BEATS
playing chess. of checkers "DEEP BLUE' IN e Deeip Blive

ONE MOVE
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Be,\tjom{ U\e,ss, acl\ievinj suFer-l\uMan Fe,r{ormance, in muHi-FlaJe,r jame,s are jre,ajr Cka”e,nﬂe,s

Go
W Yor
W‘... j : 4

NGO \eeSedd b
%\\\‘ e— \”

[Silver et al. 2016]
(Picture from DeepMind's blog post)

Poker
L

[Brown and Sandholm 2019]
(Picture from FAIR's Blog post)

Dota 2

&5

[OpenAl et al. 2019]

Starcraft |l

[Vinyals et al. 2019]
(Picture from DeepMind’s Blog post)
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(7ame,s sFe,cifica“J cle,sijnu{ for Macl\ine |e,arninj FurFose,s

For Generative modeling:

Generative Adversarial Networks
~ [Goodfellow et al. 2014]

) ¥ >
.01 e
P ey

h

Picture: [Wu et.al.. 2020]

Fake Data

Noise ———' Generator ——

True Data

r

Discriminator

—

Fake
or
Real
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(?GNQ:S are an&an Jf00| JfO le,arn CONF'QA( HOhOﬂS

by



Iu | Sjrreejr \?le inj Majr l\s

({'IHQ, Au& *0 Sanjo\lj Mal\ajan an& R\ljan O)Donne,“)
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\'\”\ajr IS Jf l\is se,que,nce,.?

3,10,5,16, 8, ...
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\'\”\ajr IS Jf l\is se,que,nce,.?

3,10,5,16, 8, ...

ASL WWW. 0elS. orj
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19 Jfl\is Jfrue,.?

14+ A+ 27 .<1,
1

1 >14 —x — =x°
V1t x> + 5o = o7

A

WWW. Wo

VA
1

¢ Wolfram!

{‘ramal Fl\a

s.t. R(A) >0

vz > > 0

.com
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https://www.wolframalpha.com/input/?i=plot+%5Csqrt%7Bx%2B1%7D+-+1+-+x%2F2+%2B+x%5E2%2F8+for+x+%3D+-.1+to+.1

are, (A} POI nommls 0{‘
Smnﬂ.na )

n& l\OW (10 JO SFQJ' C/ 6\)\‘191\6‘1???)

Ak \/JiLiFeAiaH!
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Sjrre,ejf \:lﬂmmﬂ MaJr l\s In Pracjfice,

Let us consider a unitary polynomial of degree n: P (X) = X™ + ...
|

What is the smallest value we can get for B P ()| ?
zE|—1L,

Overall it is a Minimax problem: (appears in optimization of games)

min - max |P,(z)
P, €Pn z€[—1,1]

How to approach this?
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A {"irsjr Miniman( Fro\)lem

Ways to solves this:

Googling

Ask-on stackexchange

Prove it straight (good luck)

Use Street Fighting Maths (What we will do now)

b1



A {"irsjr Miniman( Fro\)lem

How do we start?
Let us try smallvalues of n.
n=0:

n=1:

52



A {"irsjr Minimax Frouem

How do we start?

Let us try smallvalues of n.

n=0: Pp(x) =1 ) oK
n=1:

nlarger:

b3



A wfirsjr Minimax Fro\;'em

How do we start?

Let us try smallvalues of n.

n=0: P()(QZ')
n=1: Pl(a:)

nlarger:

=1 —) K

:X—|—a, — min H[laiil]|$+al ) = ()
a xe—,

b4



A wfirsjr Minimax Fro\;'em

How do we start?
Let us try smallvalues of n.
n=0: Po(z) =1 e oK

R — min max |r+ a —
n=1: Pi(z) = X +q w—) mi xe[_1,1]| + 0| — g = ()
nlarger:

min max |ag + ...+ Gpo12™ 7t + 27
aQ;,.--,an—1 r€[—1,1]
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1.

2.

A {"irsjr Minimax Frouem

How do we solve this?

min max |ag+...+ ap 1™ '+ 2"
ag,.--,an—-1 x€[—1,1]

Non-convex in x.... (we want global max).
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A {"irsjr Miniman( Fro\)lem

1. How do we solve this?

min max |ag+...+ ap 1™ '+ 2"
ag,.--,an—-1 x€[—1,1]

2. Non-convex in x.... (we want global max).

3. ldea: I know some stuffs about convex optimization (see Jamboard)

PRINCETON LANOMARKS
lllllllllllll

Convex
Analysis

@».
Q>
NE
Q-
Q-




A wfirsjr Minimax Froue,m

n_steps = 4000
print(f"d = {@}: Poly: X"0")
for d in range(1,6):
eta = .1
a = np.ones(d)
for i in range(n_steps):
# loss = get loss(a)
g = grad(get_loss)(a)
a -=eta * g / np.sqrt(i+1)

poly str = f"X~{d}"
for i in range(d-1,0,-1):

poly str = poly str + " + {a[i]} X*{i}"
print(f"d = {d}: Poly: "+ poly str)

: Poly: X"o

: Poly: XM

: Poly: X72 + -9.674113243818283e-08 X1

: Poly: XA3 + 0.00020798365585505962 X"2 + -0.7506171464920044 X 1

: Poly: X4 + 0.0003095673746429384 X"3 + -1.0005478858947754 X2 + ©.0011363952653482556 X~ 1

: Poly: XA5 + 0.00010893004946410656 X4 + -1.25143301486969 X"3 + 0.0012422415893524885 X 2 + 0.31438684463500977 X~ 1




A wfirsjf Minimax Froue,m

Summary, if we look at 2"~ P, (z) :

(@)

(@)

(@)

N=0: 1

N=1: X

N=2: 2X%- 1
N=3: 4X5 - 3X
N=4: 8X*-8X%+1
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A wfirsjr Minimax Froue,m

Summary, if we look at 2"~ P, (z) :
o N=0:1
o N=T: X
o N=2: 2X*- 1
o N=3: 4X°-3X
o N=4: 8X*-8X2+1

What if we search for, 1,1,2,-1,4,-3,8,-8,1? on www.oeis.org
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A {irs Minimax Frouem

The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

ITHE ON-LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES®

inded in 1964 by N. J. A. Sl

21121

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

|| Search

kind: triangle of coefficients in expansion of
cos(n*x) in descending powers of cos(x).
1, 1, 2, -1, 4, -3, 8, -8, 1, 16, -20, 5, 32, -48, 18, -1, 64, -112, 56, -7, 128, -256, 160,
-32, 1, 256, -576, 432, -120, 9, 512, -1280, 1120, -400, 50, -1, 1024, -2816, 2816, -1232, 220,
-11, 2048, -6144, 6912, -3584, 840, -72, 1, 4096, -13312, 16640, -9984 (list: graph: refs; listen: history:
internal format)
OFFSET 0,3
COMMENTS Rows are of lengths 1, 1, 2, 2, 3, 3, (2
This triangle is generated from A118800 by shlftlng down columns to allow for (1,
1, 2, 2, 3, 3, ...) terms in each rou Adamson, Dec 16 2007
Unsigned triangle = A@34839 * A@@7318. Adamson, Nov 28 2008
Triangle, with zeros omitted, given by (1, 1, ©, @, 0, ©, 0, 0, 0, . DELTA (e
1, @, 0, @, 9, 0, @, ...) where DELTA is the operator defined in A@84938
i Deléham, Dec 16 2011
From Wol Lang, Aug 02 2014: (Start)
This irregular triangle is the row reversed version of the Chebyshev T-triangle
AB53120 given by 91 with vanishing odd-indexed columns removed.
If zeros are appended in each row n >= 1, in order to obtain a regular triangle
(see the Philippe Deléham comment, g.f. and example) this becomes the Riordan
triangle (1-x)/(1-2%x ~2/(1-2%x). See also the unsigned version A201701 of
this regular triangle.
(End)
Apparently, unsigned diagonals of this array are rows of A200139. - Tom Copeland,
Oct 11 2014
It appears that the coefficients are generated by the following: Let SM_k = Sum(
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A {irsnl Minimax Frouem

After some googling (with
the right keywords)....

2

EXTREMAL PROPERTIES

One of the most remarkable properties of the Chebyshev polynomial, T,(x), is
that T,(x) (the Chebyshev polynomial normalized so that its leading coeffi-
cient is 1) has the smallest maximum absolute value on I: [— 1, 1] among all
P(x) = X"+ a,_ 1 x" " + -+ + a4 [cf. (1.109)] (This property is one basis for
the wide utility of the Chebyshev polynomials in numerical analysis, a topic
to which we turn in Chapter 3.) Let us begin by proving this fact. We recall
that if g(x) is continuous on

gl = max |g(x)].
—-l<x<1
Theorem 2.1. If p(x) = x" + a,_ X"~ + -~ + a,, then

el = 1T,

with equality only if p = T,.
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A Universal OFJI imizahon A'joriH\m

« - Beginning of the talk: We assumed Optimization was “solved”

« What does it mean?
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A Universal OFJI imizahon A'joriH\m

Desired properties for a “perfect” algorithm:

o  Converges to the solution.

o ~ Works for convex function.

o . Works for non-smooth fuctions (e.g. ReLU)

o  Handle discrete variables.

o  Simple

o Handle constraints and non convex domains.

o - Can solve nonconvex-nonconcave minimax problems

Too good to be true?
Where is the Trick?
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A Universal OFJI imizajrion A'joriH\m

. lwanttosolve: min f(x)
r€X CR4

[See Jamboard]
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A Universal OFJI imizahon A'joriH\m

« Desired properties for a “perfect” algorithm:

o  Converges to the solution.

o~ Works for convex function.

o . Works for non-smooth fuctions (e.g. ReLU)

o  Handle discrete variables.

o  Simple

o Handle constraints and non convex domains.

o - (Can solve nonconvex-nonconcave minimax problems
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A Universal OFJI imizahon A'joriH\m

« Desired properties for a “perfect” algorithm:

o  Converges to the solution.

o Works for convex function.

o Works for non-smooth fuctions (e.qg. ReLU)

o Handle discrete variables.

o  Simple

o Handle constraints and non convex domains.

o _Can solve nonconvex-nonconcave minimax problems
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H\anl(s everjone!
Do no {‘orje,Jr Jr 0 {‘l“ H\e, (7003'& {‘orm!

70



