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● Taught in English

● You can always ask questions in French.

● Evaluation: 100% Project 

Game Theory and Machine Learning
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● Project:
○ Validation of the projects with a mid-term proposal/abstract. (Beginning of March)

○ Project presentations at the end of the semester  (Talk) + Written report. 

○ Three kind of projects:

■ Paper critic. (Less risky) 

■ “Open” projects among the list. (More risky)

■ Propose your own project. (More ambitious though I’ll take it into account)

Game Theory and Machine Learning
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● All the courses are recorded. 

● I will put a short(er) video to watch before the course.

● Fill the google forms.

● Go the the TEAMS group and ask questions there. 

Game Theory and Machine Learning
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● Game Theory: the study of mathematical models of strategic 

interaction among rational decision-makers. [Myerson, 1991]

What is it about?
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● Game Theory: the study of mathematical models of strategic 

interaction among rational decision-makers. [Myerson, 1991]

+ Machine Learning

What is it about?

How to learn these strategic 
behaviors!!!
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● Standard Game Theory

● Standard ML

● GANs

● Optimization

● Optimization of Games 

● Some Aspect of Multi-Agent RL

We will cover
(biased by my Own interest…)           
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● Standard Game Theory

● Standard ML

● GANs

● Optimization

● Optimization of Games 

● Some Aspect of Multi-Agent RL

We will cover
(biased by my Own interest…)           

Importance of the theory.
(See end of this course)

“Supposed” to be self contained.
(Undergrad math background “required”
● Linear Algebra
● Functional analysis) 
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● Anyone who is interested in ML and Games.

● Target audience:

○ Graduate students with ML background.

● Minimal math background is important to follow some parts of the 

course. 

Who is this Class for?
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● Exercices (not graded).

● Prove some elementary results that will be used in the course.

● It is the basic knowledge to: 

○ Read ML papers (related to that topic)

○ Attend ML conferences (related to that topic too) 

● If exercices are too easy: GREAT (work on your project)

● If too hard: some pointers are provided. 

Required Background

18



● A good grade? (Yes if you ask questions put some work on your project) 

● Learn new things!!!

● Answers to your questions.

● 30-40 min Video of the Lectures 3-4 days before the class

What you can expect
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● Watch the Video.

● Do (try) the Exercices.

● Ask Questions!

● A serious project. 

What I expect from you

20

To be Active and make mistakes 



● Watch the Video.

● Do (try) the Exercices.

● Ask Questions!

● A serious project. 

What I expect from you
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To be Active and make mistakes
(If you don’t I failed) 



II.Why Games?
(Largely inspired from the Great NeurIPS tutorial on learning 
dynamics by Marta Garnelo, Wojciech Czarnecki and David Balduzzi,)
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If you have a large dataset, and you 

train a very big neural network, then 

success is guaranteed!

Ilya Sutskever 
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Deep learning is just glorified curve fitting 

Quora User 20034
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Deep learning is just glorified curve fitting 

Quora User 20034

Optimization!
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Deep learning is just glorified curve fitting 

Quora User 20034

“All the impressive achievements of deep 

learning amount to just curve fitting,”

Judea Pearl (Turing award 2011)

Optimization!
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If you have a large dataset, and you train a 

very big neural network, then success is 

guaranteed!

Ilya Sutskever 
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If you have the right objective and you 

have enough capacity and compute, then 

success is guaranteed!

(improved) Ilya Sutskever 
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If you have the right objective and you 

have enough capacity and compute, then 

success is guaranteed!

(improved) Ilya Sutskever 

● Optimizees: “Things that optimize” 

(architecture, algorithms)

● Objectives : “Target of the optimzation”

(data+loss, env+reward)
29



Even assuming that the rest is solved (dream world)

● How to construct objectives?

● How to evaluate objectives?

● How to combine objectives?

Getting the Right Objective
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● Need to curate a dataset (MNIST, CIFAR, ImageNet)

● OR Need to build an environment (Atari, chess, Go, Starcraft II)

Constructing a Task
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PROBLEMS
TOO COSTLY

curating datasets or building 

environments is labour 

intensive) 

TOO SIMPLE TOO MANY
Spurious correlations 

[Sagawa et al. 2020]

Bad labels 

Never capture real world 

complexity

With a lot of task, easier 
to cheat.

Source: deepmind.com

[Beyer et al. 2020]
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Tasks are the main Bottleneck of Progress

33
Figure from NeurIPS tutorial on learning dynamics by Marta Garnelo, Wojciech Czarnecki and David Balduzzi



What about Guarantees???
● Theoretical CS:

Algorithms have specific guarantees. (e.g. sorting,...)

● Machine Learning:
We indirectly specify the task via an objective. 

● Learning Theory:
Formal “generalization” guarantees based on unrealistic 
assumptions (e.g. train set == test set, i.i.d samples,...) 
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How Tasks are Evaluated?

● Why ImageNet? MNIST? (why vision?) 

● Science is a social thing. 

● No formal criteria to select the “most interesting” tasks. c
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How Tasks are Combined?

36

Table from NeurIPS tutorial on learning dynamics by Marta Garnelo, Wojciech Czarnecki and David Balduzzi



How Tasks are Combined?
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Table from NeurIPS tutorial on learning dynamics by Marta Garnelo, Wojciech Czarnecki and David Balduzzi



Evolution is NOT (single objective) Optimization

● Fitness is not a function of a single being.

Survival of the strongest.

● Life is not a suite of tasks. 

School is…, but in real life we do not average. 

● Rewards are crazily sparse. 

(YOLO) 
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Learning Objectives
● Learning

Do not want to hand-craft behavior. 

Catch: Learning from examples but lose behavioral guarantees.

● Learning Representations

Do not want to hand-craft features.

Catch: Lose optimization guarantees (non-convex optim) 

● Learning Losses.

Do not want to hand-craft tasks.

Catch: Learn against another agent. Tasks: being the fittest 

(e.g. GANs see Courses 4 to 8) 39



Learning Objectives
Multi-player:

Very simple notion of performance 
The complexity of the task 

depends on the opponent(s)

Single player:

Hand-crafted notion of 
performance
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Achieving super-human performance in Chess has been long standing challenge

  

Deep Blue (1996) Deeper Blue (1997) [Campbell et al. 2002][Shannon 1950]

Programming 
a computer for 
playing chess.

[Samuel 1959]

Some studies in machine 
learning using the game 
of checkers

Research paper 
on Deep Blue

Photo: EPA

Matthew Pritchett

41



Beyond Chess, achieving super-human performance in multi-player games are great challenges

[Vinyals et al. 2019]
(Picture from DeepMind’s Blog post)

Starcraft IIPoker

[Brown and Sandholm 2019]
(Picture from FAIR’s Blog post)

[Silver et al. 2016] 
(Picture from DeepMind’s blog post)

Go

[OpenAI et al. 2019]
(Picture from OpenAI’s Blog post)

Dota 2
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Games specifically designed for Machine learning purposes

Picture: [Wu et al. 2020]

For Generative modeling:

Generative Adversarial Networks
[Goodfellow et al. 2014]

Fake Data

True Data

GeneratorNoise

Discriminator
Fake
or
Real
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Games are a great tool to learn complex notions
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III.Street Fighting Maths
(title due to Sanjoy Mahajan and Ryan O’Donnell)
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What is this sequence?

3, 10, 5, 16, 8, ...
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What is this sequence?

3, 10, 5, 16, 8, ...

Ask www.oeis.org
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Is this true?

Ask Wolfram!
www.wolframalpha.com
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https://www.wolframalpha.com/input/?i=plot+%5Csqrt%7Bx%2B1%7D+-+1+-+x%2F2+%2B+x%5E2%2F8+for+x+%3D+-.1+to+.1


What are the Chebyshev Polynomials of 
Second kind ?

(and how do you spell Chebyshev???)

Ask Wikipedia!!!
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● Overall it is a Minimax problem: (appears in optimization of games)

● How to approach this?

Street Fighting Maths in Practice
● Let us consider a unitary polynomial of degree n:    

What is the smallest value we can get for                                   ?
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A first Minimax problem

Ways to solves this: 

● Googling

● Ask on stackexchange

● Prove it straight (good luck)

● Use Street Fighting Maths (What we will do now) 
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A first Minimax problem

● How do we start? 

● Let us try small values of n. 

● n = 0 : 

● n = 1 :
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A first Minimax problem

● How do we start? 

● Let us try small values of n. 

● n = 0 : OK 

● n = 1 :

● n larger:
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A first Minimax problem

● How do we start? 

● Let us try small values of n. 

● n = 0 : OK 

● n = 1 :

● n larger:
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A first Minimax problem
1. How do we solve this?

2. Non-convex in x…. (we want global max) .
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A first Minimax problem
1. How do we solve this?

2. Non-convex in x…. (we want global max) .

3. Idea: I know some stuffs about convex optimization (see Jamboard) 

57https://codeforces.com/blog/entry/63823



A first Minimax problem
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A first Minimax problem

● Summary, if we look at                         : 

○ N=0:  1

○ N =1:  X 

○ N=2:  2X2 -  1 

○ N=3:  4X3 - 3X

○ N=4:  8X4 - 8X2 + 1
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A first Minimax problem

● Summary, if we look at                         : 

○ N=0:  1

○ N =1:  X 

○ N=2:  2X2 -  1 

○ N=3:  4X3 - 3X

○ N=4:  8X4 - 8X2 + 1

● What if we search for, 1,1,2,-1,4,-3,8,-8,1 ? on www.oeis.org
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A first Minimax problem
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A first Minimax problem

62

After some googling (with 
the right keywords)….



IV. Why do we care about proofs 
(and rigor)? 

63



A Universal Optimization 
Algorithm 
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● Beginning of the talk: We assumed Optimization was “solved” 

● What does it mean? 

A Universal Optimization Algorithm 
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● Desired properties for a “perfect” algorithm: 
○ Converges to the solution.

○ Works for convex function.

○ Works for non-smooth fuctions (e.g. ReLU)  

○ Handle discrete variables. 

○ Simple 

○ Handle constraints and non convex domains. 

○ Can solve nonconvex-nonconcave minimax problems

A Universal Optimization Algorithm 

66

Too good to be true? 
Where is the Trick? 



● I want to solve:

A Universal Optimization Algorithm 
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[See Jamboard]



● Desired properties for a “perfect” algorithm: 
○ Converges to the solution.

○ Works for convex function.

○ Works for non-smooth fuctions (e.g. ReLU)  

○ Handle discrete variables. 

○ Simple 

○ Handle constraints and non convex domains. 

○ Can solve nonconvex-nonconcave minimax problems

○ Reasonable convergence rates!!!!! (i.e. being practical) 

A Universal Optimization Algorithm 
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● Desired properties for a “perfect” algorithm: 
○ Converges to the solution.

○ Works for convex function.

○ Works for non-smooth fuctions (e.g. ReLU)  

○ Handle discrete variables. 

○ Simple 

○ Handle constraints and non convex domains. 

○ Can solve nonconvex-nonconcave minimax problems

○ Reasonable convergence rates!!!!! (i.e. being practical) 

○ Theory of ML: Try to capture that practical aspect. (sample complexity and Convergence rates!!!)

A Universal Optimization Algorithm 
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Thanks everyone!

Do no forget to fill the Google form!
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