
Lecture 17: Spectral Analysis 
and Stability 



Start Recording!
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Reminders
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● Office Hours tomorrow with Adrien (12-1PM)

● Talks this Friday.



1. Mescheder, Lars, Sebastian Nowozin, and Andreas Geiger. "The numerics of gans." Neurips  (2017).

2. Gidel, Gauthier, et al. "Negative momentum for improved game dynamics." The 22nd International Conference on 
Artificial Intelligence and Statistics. PMLR, 2019.

3. Azizian, Waïss, et al. "A tight and unified analysis of gradient-based methods for a whole spectrum of differentiable 
games." International Conference on Artificial Intelligence and Statistics. PMLR, 2020.

References for this lecture:
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Today: General tools to analyse convergence AND stability of gradient based methods



We only ‘care’ about the gradient-based updates, i.e., the vector field: 
 

Variational Inequality Perspective

Previous plots. We represented the joint space 
More compact formalism:



Goal:  Find a stationary point of the vector field:  
 

Variational Inequality Perspective

In zero sum game: Equivalent to find a point with 0 gradient for each player
 
If the game is convex concave: equivalent to find a Nash!



Update rule: 

Gradient Descent Method

What we will look at: 

Arbitrary norm !!!



Spectral Analysis

Matrix norm induced by || ||



We have: 

Classical Result on Matrix Norm and Spectral Radius

For any matrix A, there exists a norm such that:

Thus: 



Questions (Bo Wen Peng and Martin Dalaire): How do we prove this 

Spectral Radius and Norm 

Idea: 



Theorem: 
1. If 𝜌 < 1 then for any ε>0, there exists a constant C such that for:

Note: we need to initialize in a Neighborhood of the optimum. 

2. If 𝜌 > 1 then for almost all initialization we do not converge to the 
optimum

Theorem 

Olivier Ethier:What is the criterion to know if we initialize close 
enough to w*?

Carl Perreault-Lafleur:
How are we assured that the norm for which the convergence 
theorem (slide 10) holds is relevant? ie. we would be happy to 
converge w.r.t. l2 norm, but what if it converges w.r.t. a weird 
norm?



Connection between :
● convergence (numerical analysis) and 
● eigenvalues (spectral analysis) 

Quantity of interest:

Conclusion 

Spectral radius
Jacobian of the 
Vector Field at 
the optimum 

This has to be 
smaller than 1 



First idea

For a small step size 

Conclusion: We need 

Reminder: We want this quantity to be < 1!!!!

Strongly Convex function: Positive Hessian.
This: Generalization of (strong) convexity for games 



Visualization
 Changing η moves • to • on the dotted lines 

Goal: Move all the • inside the blue circle 
(norm =1)
Fact: with η small enough it will happen.   

Figure from Mescheder, et al 2018



Example 1

Three sets of eigenvalues: 

Example 2 Example 3



Interpretation: The convergence 
rate is given by the radius of the red 
circle. 

Problem: for each matrix, 
we need to find the best step size η



Special case: Gradient Descent

Gradient Descent: 

Symmetric matrix => real eigenvalues !!

Question (several students) : why does the Hessian has to have real eigenvalues?



Problem: find that optimal η  

Theorem for Gradient Descent



Strongly convex and Lipschitz function: (numerical proof)

Lecture on Optimization

Condition number: The quantity of interest 
for convergence speed. 

Strongly convex and Lipschitz function:  (spectral proof)

Question (Elio) : What about the non-smooth case? Does the bounds of the 
spectral radius still hold in the case of non-smooth convex game ?



Why are games more challenging to optimize (and analyze)?
Imaginary (games) vs Real 
eigenvalues (minimization)



Theorem

𝜌2

𝜌2



Intuition: 

Equivalent of 1/L Equivalent of \mu



We have powerful tool to analyze local convergence of  games using 
spectral analysis. 

● The analysis of games is more challenging because the Jacobian of 
the vector field               may have imaginary eigenvalues. 

● For minimization, the Jacobian is a Hessian (thus only has real 
eigenvalues). 

● The (sufficient) condition for local convergence was to have only 
eigenvalues with positive real part. 

Conclusion

Charlie Gauthier: 
How can this be used in practice? 


