Lecture 19: Stability and Equilibrium

Start Recording!

2

Keminders

- Office Hours tomorrow with Adrien (11-12AM)
 - No Talks this Friday. (Non-working day)
- Last lecture on Smooth Games is Today

•

Two Last lectures will be on empirical game theory, self-play and other interesting things.

Talk on <u>StarCraft II</u> by <u>Wojciech M. Czarnecki</u> On Friday 16th (3rd author on the paper)

References for this lecture:

- . Daskalakis, Constantinos, and Ioannis Panageas. "The limit points of (optimistic) gradient descent in min-max optimization." arXiv preprint arXiv:1807.03907 (2018).
- 2. Mazumdar, Eric, Lillian J. Ratliff, and S. Shankar Sastry. "On gradient-based learning in continuous games." SIAM Journal on Mathematics of Data Science 2.1 (2020): 103–131. (Arxiv in 2018)
- 3. Berard, Hugo, et al. "A closer look at the optimization landscapes of generative adversarial networks." ICLR (2020).

Today: Stability of gradient based methods using spectral Analysis

Local Nash Equilibrium

Two player games (everything generalizes to more than 2). Nash Equilibria: $\theta^* \in \arg\min_{\theta \in \Theta} L_1(\theta, \phi)$

 $\phi^* \in \arg\min_{\phi \in \Phi} L_2(\theta, \phi)$

 $\phi^* \in \arg\min_{\phi \in B(\phi^*, \delta)} L_2(\theta, \phi)$

Two player games (everything generalizes to more than 2). Local Nash Equilibria: $\theta^* \in \arg\min_{\theta \in B(\theta^*, \delta)} L_1(\theta, \phi)$

Local Neighborhoods

Variational Inequality Perspective

We only 'care' about the gradient-based updates, i.e., the vector field:

$F(\theta,\phi) = \begin{pmatrix} \nabla_{\theta} L_1(\theta,\phi) \\ \nabla_{\phi} L_2(\theta,\phi) \end{pmatrix}$

 $\omega = (\theta, \phi)$

Previous plots. We represented the joint space $(heta_t, \phi_t)$ More compact formalism:

Variational Inequality Perspective

 $F(\omega^*) = 0$

<u>Goal:</u> Find a stationary (fixed) point of the vector field:

In zero sum game: Equivalent to find a point with 0 gradient for each player

<u>If the game is convex concave:</u> equivalent to find a Nash!

<u>Beyond Convex-concave:</u> Only Necessary (First Order) Conditions!!! What about Sufficient (Second Order) Condition?

Gradient Descent Method

Update rule:

$\omega_{t+1} = \omega_t - \eta F(\omega_t)$

 $\nabla F(\omega^*)$

Stability of a fixed point given by the spectrum of:

Stability of Gradient Based Method

Let **ω*** be a stationary point <u>Property (from last time):</u>

When $\Re(\lambda)>0\,,\,\lambda\in\nabla F(\omega^*)$ The gradient method (locally) converges to ω^*

Motivates

Definition: A stationary point ω^* is said to be differentially locally stable only if $\Re(\lambda)>0\,,\,\lambda\in
abla F(\omega^*)$

Stability of Gradient Based Method

Let ω^* be a stationary point Property Property When \Re The grad

Definition: A stationary point ω^* is said to be differentially locally stable only if $\Re(\lambda)>0\,,\,\lambda\in
abla F(\omega^*)$

Motivates

What about Nash Equilibrium???

 $(\theta^* \in \arg\min_{\theta \in B(\theta^*, \delta)} L_1(\theta, \phi))$

 $\begin{cases}
\phi^* \in \arg\min_{\phi \in B(\phi^*, \delta)} L_2(\theta, \phi)
\end{cases}$

 $\nabla_{\theta} L_1(\theta^*, \phi^*) = 0 \quad \text{and} \quad \nabla_{\bullet} L_2(\theta^*, \phi^*) = 0$

 $\nabla^2_{\theta} L_1(\theta^*, \phi^*) \succ 0 \quad \text{and} \quad \nabla^2_{\phi} L_2(\theta^*, \phi^*) \succ 0$

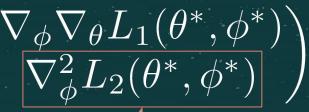
<u>Necessary Stationary conditions:</u>

Sufficient 2nd order conditions:

Sufficient Condition For a Local Nash

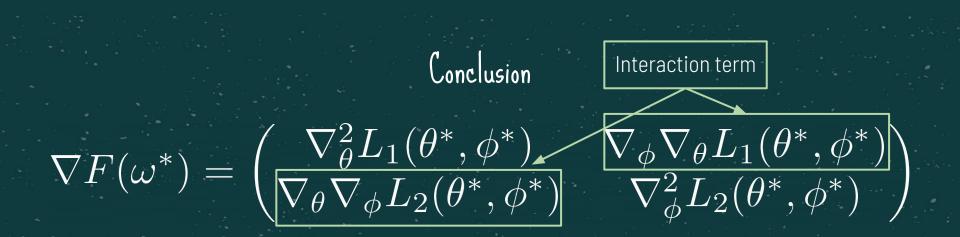
Assume ω^* is a stationary point:

 $\nabla F(\omega^*) = \begin{pmatrix} \overline{\nabla_{\theta}^2 L_1(\theta^*, \phi^*)} & \overline{\nabla_{\phi} \nabla_{\theta} L_1(\theta^*, \phi^*)} \\ \nabla_{\phi} \nabla_{\phi} L_2(\theta^*, \phi^*) & \overline{\nabla_{\phi}^2 L_2(\theta^*, \phi^*)} \end{pmatrix}$



<u>Definition</u>: Differentiable Nash Equilibrium

 $\nabla^2_{\theta} L_1(\theta^*, \phi^*) \succ 0$ and $\nabla^2_{\phi} L_2(\theta^*, \phi^*) \succ 0$



Differentiable Nash Equilibrium $abla^2_{\theta}L_1(\theta^*, \phi^*) \succ 0$ $abla^2_{\phi}L_2(\theta^*, \phi^*) \succ 0$ No interaction!

Locally differentially stable stationary point $\Re(\lambda)>0\,,\,\lambda\in
abla F(\omega^*)$

Interaction Matters!

Conclusion Interaction term Question (Amit): What is the intuition of a stable fixed $\nabla F(\omega^*)$ point compared to the intuition of a Nash Eq? For more see [Berard et al. 2020] Differentiable stationary 0.5 $abla^2_{ heta}$. -0.502 No intera (a) 2D projection of the vector field. (b) Landscape of the generator loss.

Differentiable Equilibrium

Exercice: Find a (2 player 0-sum) game that has a Nash equilibrium but **no Differentiable Nash Equilibrium!**

Hints in a skipped slide.

Question: (Amit) Is differentiable Nash Eq the same as Nash Eq? A: No, But close

Differentiable Equilibrium

Exercice: Find a (2 player 0-sum) game that has a Nash equilibrium but **no Differentiable Nash Equilibrium!**

Example 1:

Example 2:

Example 3:

 $L(\theta,\phi) = \theta \cdot \phi$

 $L(\theta,\phi) = \theta^2 - \theta \cdot \phi$

 $L(\theta,\phi) = \theta^2 - \theta \cdot \phi - \phi^2$

Differentiable Equilibrium

Exercice: Find a (2 player 0-sum) game that has a Nash equilibrium but **no Differentiable Equilibrium!**

Conclusion:

weaker notion of Equilibria. Easier do deal with (only related to eigenvalues)

Zero-Sum Case: $L_1=-L_2$

 $\nabla F(\omega^*) =$

 $\nabla_{\theta}^{2} L_{1}(\omega^{*}) = S_{1}$ $\nabla_{\phi} \nabla_{\theta} L_{1}(\theta^{*}, \phi^{*}) = -\nabla_{\theta} \nabla_{\phi} L_{2}(\theta^{*}, \phi^{*})^{\top} = B$ $\nabla_{\phi}^{2} L_{2}(\theta^{*}, \phi^{*}) = S_{2}$

 S_1

 B^{\prime}

 S_2 /

Zero-Sum Case: $L_1 = -L_2$

$abla _{ heta }^{2}l$ Exercice: What is

 $\nabla F(\omega^*)$

$\nabla F(\omega^*) = \begin{pmatrix} \nabla^2_{\theta} L_1(\theta^*, \phi^*) & \nabla_{\phi} \nabla_{\theta} L_1(\theta^*, \phi^*) \\ \nabla_{\theta} \nabla_{\phi} L_2(\theta^*, \phi^*) & \nabla^2_{\phi} L_2(\theta^*, \phi^*) \end{pmatrix}$

For the bilinear game: $\min \max \theta^\top B \phi$

 $\begin{array}{ccc} & \min \max_{\theta} \theta \\ \theta & \phi \end{array}$

B

Does interaction Matter?

 $\begin{pmatrix} S_1 \\ D^{\top} \end{pmatrix}$

Differentiable Nash Equilibrium

 $S_1 \succ 0$

 $S_2 \succ 0$

No interaction!

 $\nabla F(\omega^*) =$

Locally differentially stable stationary point

В

 S_2

 $\Re(\lambda) > 0, \ \lambda \in \nabla F(\omega^*)$

Interaction Matters!

Does interaction Matter?

 $\overline{S_1}$

Differentiable Exercice:

 $\nabla F(\omega^*)$

Try to prove this Implication!Try to Find an example of Stationary point that is **not** a Differentiable Nash.

No interaction!

 S_2

 $\overline{S_1}$

Interaction Matters!

В

 S_2

ry point

 $|\nabla F(\omega^*)$

Conclusion: Zero-Sum Game

 S_1

Differentiable Nash Equilibrium $S_1 \succ 0$ $S_2 \succ 0$

 $\nabla F(\omega^*) =$

Locally differentially stable stationary point $\Re(\lambda) > 0, \ \lambda \in \nabla F(\omega^*)$

B

So

Non-Zero Sum Games

 $\nabla F(\omega^*) = \begin{pmatrix} S_1 \\ A \end{pmatrix}$

Di

Ec

 $\mathcal{S}_1 >$

 $S_2 \succ 0$

Just Because A is not $-B^{T}$

oint

Exercice: 1. Try to Find an example of Differentiable Nash that is **not** a locally stable Stationary Point.

 $\Re(\lambda) > 0, \ \lambda \in \nabla F(\omega^*)$

 $\overline{S_2}$,

What about ExtraGradient and Optimistic Methods?

Previous Stability: GD was the reference

ExtraGradient:

 $\omega_{t+1} = \omega_t - \eta F(\omega_t - \eta F(\omega_t))$

 $F_n(\omega_t)$

Q: Can we get, More details on this A: See Jamboard and [Azizian et al. 2020] Same conditions but on

Stability of ExtraGradient:

The locally stable stationary points of EG are:

$\Re(\lambda) > 0, \, \forall \lambda \in \nabla F_{\eta}(\omega^*)$

Last thing to do:

 $\overline{\nabla F_{\eta}(\omega)} = (I_d - \eta \nabla F(\omega)) \nabla F(\omega - \eta F(\omega))$ $\nabla F_{\eta}(\omega^*) = (I_d - \eta \nabla F(\omega^*)) \nabla F(\omega^*)$

Stability of ExtraGradient:

The locally stable stationary points of EG are:

<u>Proposition:</u> A stationary point ω^* is a locally stable points of EG iif

 $\Re(\lambda) - \eta \Re(\lambda)^2 + \eta \Im(\lambda)^2 > 0, \, \forall \lambda \in \nabla F(\omega^*)$

Positive for small enough eta

Positive even when the real part is 0!!!

Question: (Jonathan) Why is this set larger???? (Elio) What about the result in Daskalakis et al. Does the case of imaginary eigenvalues apply at all in this case?

EG is More Stable

Locally Differentially Stable Points of EG (for small enough eta) $\Re(\lambda) - \eta \Re(\lambda)^2 + \eta \Im(\lambda)^2 > 0, \ \forall \lambda \in \nabla F(\omega^*)$

> Locally Differentially Stable Stationary Point

 $\Re(\lambda) > 0 \,, \, \lambda \in \nabla F(\omega^*)$

EG is More Stable

Exercice:

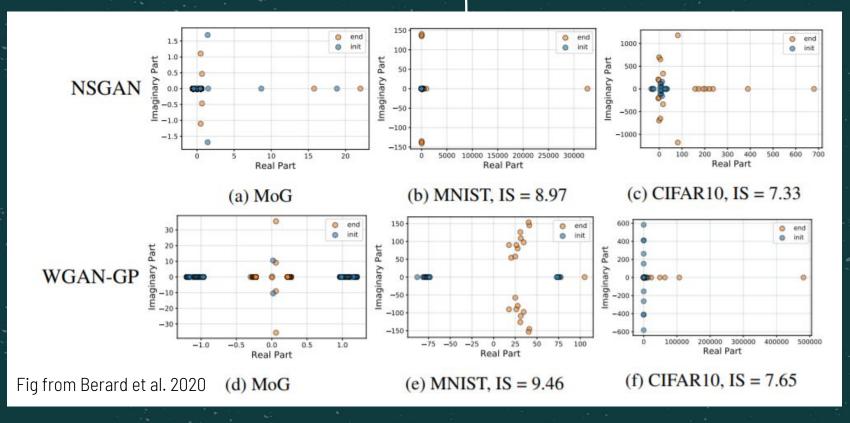
 \Re

Show that the vector field of the Bilinear game is Stable for EG but not for the Gradient method.

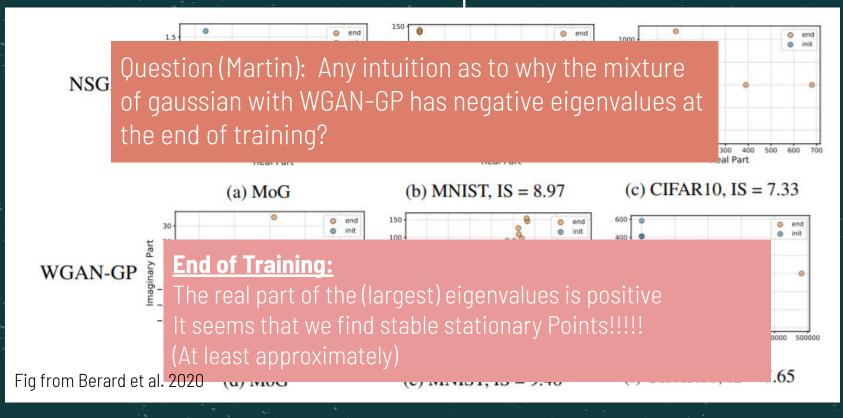
Locally Differentially Stable Stationary Point

 $\Re(\lambda) > 0 \,, \, \lambda \in \nabla F(\omega^*)$

What about GANs in practice?

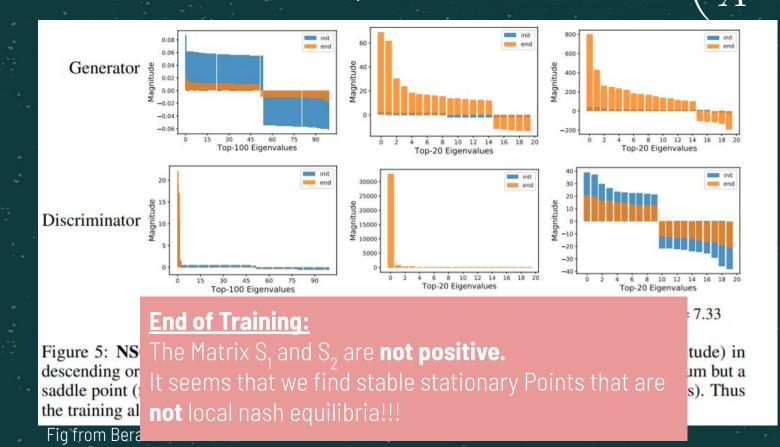


What about GANs in practice?



What about GANs in practice? $abla F(\omega^*) =$

 S_1

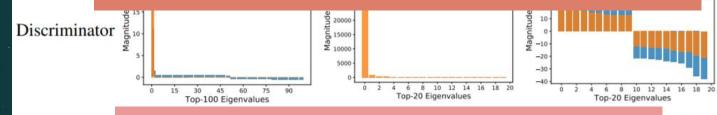


What about GANs in practice? $\overline{\nabla F}(\omega^*) =$

init

init

Genera Question (Olivier): What can we say about the discriminator? It seems that for two of the three datasets, the eigenvalues for the discriminator stay positive.



End of Training:

0.08

descending or saddle point (1 the training al Fig from Bera

Figure 5: NS The Matrix S_1 and S_2 are **not positive.** It seems that we find stable stationary Points that are **not** local nash equilibria!!!

tude) in im but a s). Thus

7.33

 S_1

Conclusion

- Can analyze stability using $\,
 abla F(\omega^*)$
- Can use the block decomposition :

 $\nabla F(\omega^*) = \begin{pmatrix} \nabla_{\theta}^2 L_1(\theta^*, \phi^*) & \nabla_{\phi} \nabla_{\theta} L_1(\theta^*, \phi^*) \\ \nabla_{\theta} \nabla_{\phi} L_2(\theta^*, \phi^*) & \nabla_{\phi}^2 L_2(\theta^*, \phi^*) \end{pmatrix}$ To define Differentiable Nash Equilibrium

- Slightly weaker notion (Sufficient second order conditions) of stability/Equilibrium.
- The optimization method change the stability conditions
 (for instance EG stabilizes the bilinear game)

Lonclusion

- Can analyze stability using $\nabla F(uv^*)$
- Can t
 Can t
 Question (Justine): Since in practice we do not reach the Nash Equilibrium, but the models still work well, I was wondering if it is worth trying to reach the Nash Equilibrium anyways?
 - To de Answer:
 - We do not know
- Sligh stabi
- Methods to only reach Nash equilibrium:
 - Adolphs et al. (2018); Mazumdar et al. (2019)
 - Use Second order information.
 - The optimization method change the stability conditions (for instance EG stabilizes the bilinear game)