Lecture 23: Evaluation of Multi-Agents systems

Start Recording!

2

Reminders

- Office Hours tomorrow with Adrien (11-12AM)
 - Last lecture today.
- Papers presentation the 27th
 - Final Reports the 28th

•

Talk on <u>StarCraft II</u> by <u>Wojciech M. Czarnecki</u>

On Friday 23th **at noon**

References for this lecture:

. Balduzzi, David, et al. "Re-evaluating evaluation." arXiv preprint arXiv:1806.02643 (2018).

Today: Empirical Games

▲ ▲ ▲ ▲ ▲ ▲ ▲ 三 ④ 호 會 曾 호 ④ Ϊ

First Part: Agents Vs. Agents

 三
 二
 二
 二
 二
 二
 二

 土
 土
 土
 土
 土
 土
 土

R

Last time: many questions about how to estimate ELO.

loday

- This time:
 - Estimate Elo !
 - Why sometimes we should not only consider Elo.
 - Beyond Elo !

AntiSymmetric (zero-sum) Game (Functional Form)

Anti-symmetric Payoff:

 $\varphi: W \times W \to \mathbb{R}$

Players (example: RL policies)

Intuition: Switching the roles switches the results. Example: Chess, Go, Poker (need to randomize who starts)

 $\varphi(u,w) = -\varphi(w,u)$

NB: Can generalize to non-zero sum (just heavier because of the two losses)

AntiSymmetric (zero-sum) Game (Functional Form)

Anti-symmetric Payoff:

Players (example: RL policies)

 $\varphi(\varphi(u,v) = \operatorname{logit}(\mathbb{P}(u \succ v)))$

Intuition: Switching the roles switches the results. Example: Chess, Go, Poker (need to randomize who starts)

NB: Can generalize to non-zero sum (just heavier because of the two losses)

Example: Elo Rating

 $\mathbb{P}(u \succ w) = \frac{1}{1 + \exp(\alpha \cdot (f(w) - f(u)))}$

f(u) : Elo Rating of u

 $\varphi(u, v) = \operatorname{logit}(\mathbb{P}(u \succ v)) = \alpha \cdot (f(u) - f(v))$

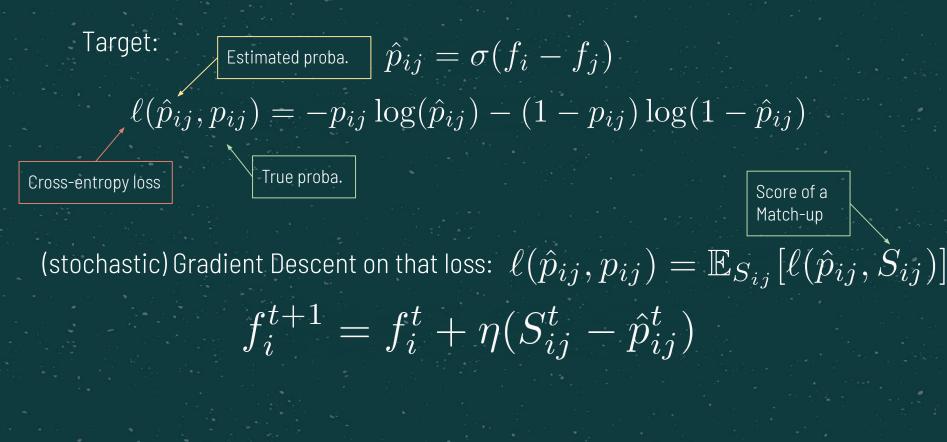
Antisymetric payoff!!! :-)

Online Estimation of the Elo

Target: p_{ij} Estimated proba. $\hat{p}_{ij} = \sigma(f_i - f_j)$ $\ell(\hat{p}_{ij}, p_{ij}) = -p_{ij}\log(\hat{p}_{ij}) - (1 - p_{ij})\log(1 - \hat{p}_{ij})$ True proba. Cross-entropy loss Score of a Match-up (stochastic) Gradient Descent on that loss: $\ell(\hat{p}_{ij}, p_{ij}) = \mathbb{E}_{S_{ij}}[\ell(\hat{p}_{ij}, S_{ij})]$ $f_i^{t+1} = f_i^t - \eta \nabla_{f_i} \ell(\hat{p}_{ij}, S_{ij}^t)$

Exercice: derive this gradient

Online Estimation of the Elo



Take-away

• Optimization perspective on the ELO: Stochastic gradient descent with constant step-size

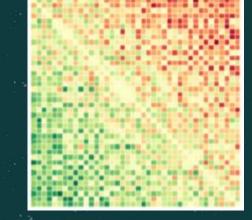
 $\min_{f_i} \mathbb{E}_{f_j \sim \text{pop}} \ell(\sigma(f_i - f_j), \mathbb{P}(i \succ j))$

SGD with constant step-size does not converge. (It only converges to a neighborhood proportional to the variance times the step-size) Question: try to think why?

Estimation of the ELO at a given time!

Population of agents $\,\mathcal{B}=(u_i)\,$ Payoff matrix of the group: $\,A_{\mathcal{B}}\,$

 $[A_{\mathcal{B}}]_{ij} = \varphi(u_i, u_j)$



From last time

Population of agents $\,\mathcal{B}=(u_i)\,$ Payoff matrix of the group: $\,A_{\mathcal{B}}\,$

The matrix contains 'simultaneous match-ups'

Question: How can we use that matrix to estimate Elo at a given time t.

Getting Elo From A

Intuition:

Then

)uestion (Simon)

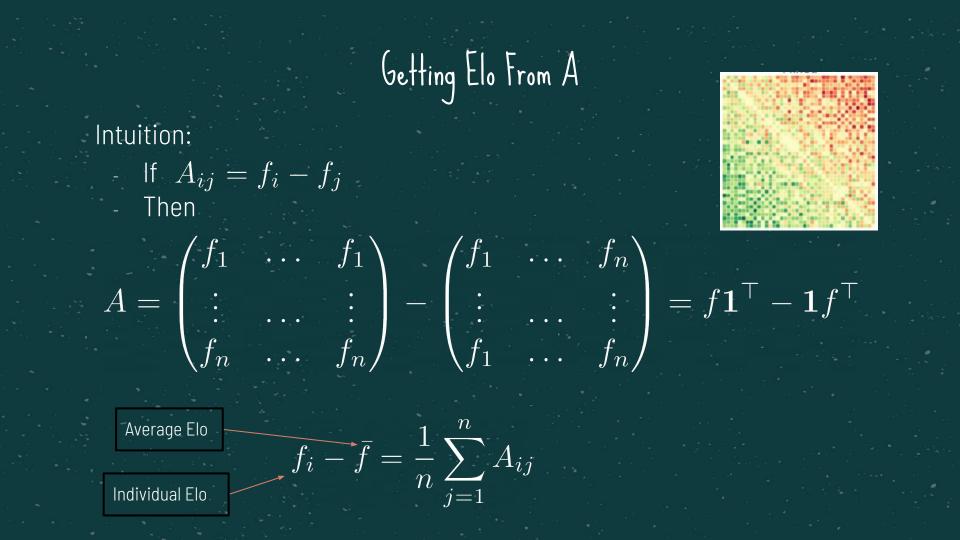
If $A_{ij} = f_i - f_j$

J We've seen that in a hypothetical tournament featuring all possible matchups, what you can calculate is [f_i - f_avg]. This emphasizes that to calculate f_i you need prior
f knowledge of f_avg.
Drift of the ELo score?

 $\overline{f_i - f} = \frac{1}{n} \sum_{j=1}^n A_{ij}$

Average Elo

Individual Elo



Getting Elo From A

Theorem:

If $A_{ij} = f_i - f_j$ We have: $A = f \mathbf{1}^\top - \mathbf{1} f^\top + B$

Transitive component

Cyclic component: $B\mathbf{1}=\mathbf{0}$

Take-away:

- ELO = f
- Meaningful if B << f

Cyclic component: There exists cycles: **P1** beats P2, P2 beats P3, P3 beats **P1**

Getting Elo From A

Theorem:

We hav

Question (Semih)

If $A_{ij} = f_i - f_j$

- What's the intuition (or rather, theorem) behind the fact that a matrix A can be decomposed into transitive and cyclic components?
- What are the assumptions required such that such a decomposition exists?

Answer: It is more about identifying what is cyclic and what is transitive.

There exists cycles: **FI** beats FZ, FZ beats FD, FD beats **FI**

Why do we care about that

Elo is useful to predict win-loss probability:Under the assumption that the game is transitive

 $\mathbb{P}(i \succ j) = \sigma(f_i - f_j)$

Assuming we 'know' f_i and f_j we can predict who will win.

We need a "higher-order" ELO in non-transitive games.

Higher Order Elo

 O^{\top} $\lambda_1 \geq \ldots \geq \lambda_p$

Idea: "PCA" on B. - B is skew-symmetric -> NO PCA but Schur decomposition! $A = f \mathbf{1}^{ op} - \mathbf{1} f^{ op} + B$

Orthogonal matrices

 $egin{pmatrix} 0 & \lambda_1 \ -\lambda_1 & 0 \ \end{pmatrix}$

Estimate the principal components of B.

B = O

Idea: "PCA" on B.

First-K components: best rank-K estimate of B

Higher Order Elo

$\min_{B = rk(B_K) = K} ||B - B_K||_2$

Orthogonal matrices

Estimate the principal components of B.

Higher Order Elo

 $B \approx \lambda_1 O_{n \times 2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} O_{n \times 2}^{\top}$

Perf of player i depends on two quantities:

- Skills (ELO): f_i
- Strategy (cyclic vector): (O_{i1}, O_{i2})

Says how much the game is cyclic

 $\hat{p}_{ij} = \sigma(A_{ij}) \approx \sigma(f_i - f_j + \lambda_1 (O_{i1}O_{j2} - O_{i2}O_{j1}))$

Difference of skills

Cyclic component

Higher Order Elo

Perf of player i depends on two quantities: • Skills (ELO): f_i • Strategy (cyclic vector): (O_{i1}, O_{i2})

Estimated with an empirical payoff matrix

Caveat: We need all the pairwise matchups!!! (not always the case... think about chess)

Agents Vs Tasks

1 0000001 1 000700

How Tasks are Combined?

	Task 1	Task 2	Task 3	AVG Rank
Agent 1	89	93	76	86 1
Agent 2	85	85	85	85 2
Agent 3	79	74	99	84 3

Table from NeurIPS tutorial on learning dynamics by Marta Garnelo, Wojciech Czarnecki and David Balduzzi

How Tasks are Combined?

	Task 1	Task 2	Task 3	Task 3'	AVG	Rank
Agent 1	89	93	76	77	83.75	3
Agent 2	85	85	85	84	84.75	2
Agent 3	79	74	99	98	87.5	1

Averaging is a dangerous game.

Table from NeurIPS tutorial on learning dynamics by Marta Garnelo, Wojciech Czarnecki and David Balduzzi

Desired properties

Desired properties:

3.

Invariant: adding redundant copies of an agent or task to the data should make no difference.

2. **Continuous:** the evaluation method should be robust to small changes in the data.

Interpretable: hard to formalize, but the procedure should agree with intuition in basic cases

Meta-Agent

$\min_p \max_q p$

	Task 1	Task 2	Task 3
Agent 1	89	93	76
Agent 2	85	85	85
Agent 3	79	74	99

Meta-Task

Maxent Nash Evaluation Method

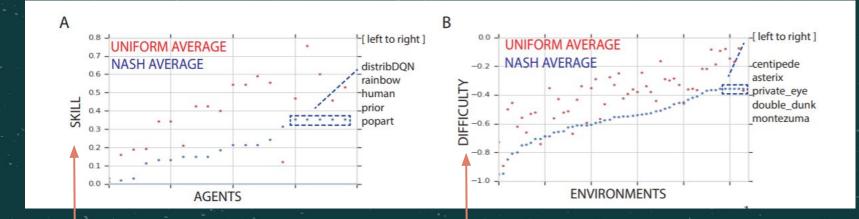
Theorem: There is unique (p^*,q^*) that maximize the entropy $H(p^*) + H(q^*)$

Best Agents

Best Agents are the ones in the MaxEnt Nash

- P1. Invariant: Nash averaging, with respect to the maxent NE, is invariant to redundancies in A.
- *P2.* Continuous: If \mathbf{p}^* is a Nash for $\hat{\mathbf{A}}$ and $\epsilon = \|\mathbf{A} \hat{\mathbf{A}}\|_{max}$ then \mathbf{p}^* is an ϵ -Nash for \mathbf{A} .
- *P3.* Interpretable: (i) The maxent NE on **A** is the uniform distribution, $\mathbf{p}^* = \frac{1}{n}\mathbf{1}$, iff the meta-game is cyclic, *i.e.* div(**A**) = **0**. (ii) If the meta-game is transitive, *i.e.* **A** = grad(**r**), then the maxent NE is the uniform distribution on the player(s) with highest rating(s) there could be a tie.

Application: Atari



Perf against the Env (uniform or Nash Avg)

Difficulty of the env against an avg player (uniform or Nash Avg)

Application: Atari

UNIFORN NASH AV Ouestion (Uros):

Perf against the Env (unifo

A

В

If I understand well, MaxEnt Nash define what task are important based on the agents, but isn't this biased, I am not sure it will necessary selected the most important tasks.

Also what about when we don't have a lot of agents to compare, is it still working well.

tipede rix ate_eye ble dunk

ntezuma

t to right]

r Nash Avg)

Conclusion

- Two big settings for evaluations
 - Agents Vs. Agents
 - Agents Vs. Env
- For some games we may want to go beyond ELO (estimate cyclic component of the game)
- For Agents vs. Env we can use MaxEnt Nash to get a principled way to evaluate agents across envs.