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Empirical Risk Minimization:

2 perspectives: 

Usual Goal in ML

Stochastic
Deterministic 
(a.k.a., Batch)



Gradient Descent:

Our Algorithm (Batch Case) : Gradient Descent
Descent Method!!!!

Step-Size (a.k.a 
learning rate)



● Standard assumptions 

● Convergence in the convex case

● Convergence in the strongly-convex case 

(we will cover non-convex case later) 

Outline for Gradient Descent



source : https://www.di.ens.fr/~fbach

Convexity



source : https://www.di.ens.fr/~fbach

Convexity
Remark:

● Convexity is the most standard assumption
● Local minima are Global minima!
● We can prove convergence rates!
● We have convex duality. [Boyd and Vandenberghe 

(2004)]



source : https://www.di.ens.fr/~fbach

Convexity with Differentiable functions



source : https://www.di.ens.fr/~fbach

Convexity with Differentiable functions
Remark:

● Can extend this to non-differentiable function  
● Any convex function is sub-differentiable



Convexity with Twice differentiable functions
source : https://www.di.ens.fr/~fbach



● Show that for convex functions {local minima} = {global minima}

● Show that for differentiable functions def in Slides 6 and 7 are 
equivalent.

● Show that for twice differentiable functions def in Slides 6 and 7 are 
equivalent.

Exercices:



Smoothness and Strong Convexity
● A  smooth function is a differentiable function with Lipschitz 

gradients: 

● If the function is twice differentiable we have: 

source : https://www.di.ens.fr/~fbach



Smoothness and Strong Convexity
● A  smooth function is a differentiable function with Lipschitz 

gradients: 

● If the function is twice differentiable we have: 

● Example:

 

Bounded data implies smooth function (generalizes to other losses)

source : https://www.di.ens.fr/~fbach



● If the function is twice differentiable we have: 

● A  function is strongly convex if: 

Smoothness and Strong Convexity

source : https://www.di.ens.fr/~fbach

New term



● If the function is twice differentiable we have: 

● A  function is strongly convex if: 

Smoothness and Strong Convexity

source : https://www.di.ens.fr/~fbach

New term

● Example:

 

Invertible Covariance of the data implies strong convexity.



Smoothness and Strong Convexity

Source: http://www.pokutta.com/



Smoothness and Strong Convexity

source : https://www.di.ens.fr/~fbach

Large means close to 1 (easy problem) Small means close to 0 (harder problem)



Gradient Descent:

Back to Gradient Descent
Descent Method!!!! Step-Size (a.k.a 

learning rate)

Today two main results (smooth function):
● Convergence in the strongly convex case (faster)
● Convergence in the convex case (slower) 



Lemma on smooth function:

Descent Method

Descent Lemma:

Exercice: Prove these two lemmas.

Descent!!!!



Lemma for Strongly convex functions

Strongly convex case
Minimum of 
the function

Convergence Result: 

Exercice: prove this!



Lemmas for convex functions

Convex case Point where the 
min is achieved

Convergence Result (for the right step-size): 

Exercice: prove this!

Remark: 
● Many variations (Different step-sizes, Projections ….)

● We want the step-size to be as big as possible
(bigger means faster)

● Many proofs use similar ideas!!!!
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Lemmas for convex functions

Convex case Point where the 
min is achieved

Convergence Result (for the right step-size): 

Exercice: prove this!

Remark: 
● Many variations (Different step-sizes, Projections ….)

● We want the step-size to be as big as possible
(bigger means faster)

● Many proofs use similar ideas!!!!
 



Why care about rate?

Summary
Strongly convex case: (Linear rate) 

Condition number: The quantity of interest 
for convergence speed. 

Convex case: (Linear rate) 



Why care about rate?

Summary
Strongly convex case: (Linear rate) 

Condition number: The quantity of interest 
for convergence speed. 

Convex case: (Linear rate) 

Why care about rate?

[Bottou and Bousquet (2008)] – In machine learning, no need to optimize 
below estimation error

v.s.

Three kind of errors:

Approximation 
error (Bias)

Estimation error 
(Variance)

Optimization error (useless 
to be too small)



First Last Algorithm: Steepest Descent 

● If the norm is the L2 norm then we recover gradient descent.

● Exercice: what do we get if we use the L∞ norm???

● Remark: proof not trivial. A more natural extension is a penalized version: Arbitrary norm!!!



Second Last Algorithm: Projected Gradient Descent 

● Gradient Descent + Projection step.

Figure from [Dunn 1979]

● Steepest-descent version: 



Second Last Algorithm: Projected Gradient Descent 

● Gradient Descent + Projection step.

Figure from [Dunn 1979]

● Steepest-descent version: 

Remark: 
● Different notion of optimality
● Extending the proof is quite

Straightforward. 
(projection is contractive)

● Rich literature on lower-bound 
And faster algorithms.



● Many different proofs
● Standard Assumption to get convergence Rates:

○ Lipschitz gradient
○ Convexity 

Conclusion

● Many variants:
○ Projected Gradient Descent
○ Steepest Descent

Not Valid in Deep-Learning

Application: Adversarial Examples (next course) 

For more: check the books in the next slides. 
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