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Empirical Risk Minimization:

1o
10 ; U(fo(xs), vi)

So what we have is a classifier that is good on the train set: (ajz - yz)

Question What about what is close to the train and test sets?
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|z —a'|| <e



Ao\ve,rsarial Examples In One Picjrure

|z —a'|| <e

N

Any meaningful norm

® Examples: L, orl_norms.
e Beyond that anything that says

‘Two images are close’

/
.
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How to find the Best attack?

7/ Has to stay close to x!!!
max £(f(x"),y))

X

suchthat ||z — 2| < €



Aclve,rsarial Examrles as an OFJr imizajrion Proue,m

' € argmaxy,cx U(fe(2'),y), s.t. d(z,x") <e.

RN \

e f :function to attack. Optimization Usually L, norm.
Problem
e X :input datapoint. °3 5

e X :adversarial example.
We Need to know

the function to

o V:truelabel. e
optimize

e /- loss function.
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2 € argmaxyex L(fi(x),y), st. d(z,z) <e.

o Threat model:
 What do we assume the
~ attacker has-access to.

Y what is the threat)
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. ldea: Use(projected) gradient ascent to solve this:

' € argmax,cx £(fi(x'),y), st. d(x,z') <e.

« |dea?: Use a gradient method that correspond to'the geometry of
the constraint:

x— 2| <e

« |dea 3:do we need more than 1step?
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nfidence  Source. Explaining and harnessing adversarial examples 2% 3

Vet s 3)

sign(V£(f(x),y)))




Orijinal an Jracli

e |step of Steepest descent with L_ constraints.
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« Several steps of steepest descent. [Madry et al, 2017]
« Add momentum [Dong et al 2018]

« When several steps.. Be careful of the constraints:

' €[0,1] and |z —2/|| <e
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. ldea: query £ around x to get an approximation of the gradient.

0(f(x)) = £(f(x + de;))
0

Related to zero-th order optimization

~ [VE(f ()]

(will not be the topic of this course)

« See[Siddhant etal. 2020] for a survey of Black Box Attacks.



Denfe,nse,s

|deas to be robusts againsts such Adv Attacks:

.. Gradient Masking (now)
2. Preprocessing of the input
5. Adversarial Training (Next Lecture)

.. Many more...[ Prakash et al. 2018], [ Liao et al. 2018], [Schott, Lukas,
et al. 2018] (Open research direction)

(see https://www.robust-ml.org/defenses/)



https://www.robust-ml.org/defenses/
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https://openai.com/blog/adversarial-example-research/

Sjranclartl H\injs Jro l(now

.- Change theloss [Carlini, Wagner 20161.

« largeted adversarial attacks: Other label

¥ €arg min L(f(z).1))

|x—z'||<e


https://arxiv.org/pdf/1608.04644.pdf

