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1 Summary

1.1 Reference
Today’s lecture is based on these three papers:

• Gidel, Gauthier, et al. ”A variational inequality perspective on generative adversarial networks.” ICLR 2019 [2]

• Mokhtari, Aryan, Asuman Ozdaglar, and Sarath Pattathil. ”A unified analysis of extra-gradient and optimistic
gradient methods for saddle point problems: Proximal point approach.” International Conference on Artificial
Intelligence and Statistics. PMLR, 2020. [3]

– Provides an analysis on extra gradient by considering it as an approximation of the sub-optimal point
method.

• Azizian, Waı̈ss, et al. ”A tight and unified analysis of gradient-based methods for a whole spectrum of differen-
tiable games.” International Conference on Artificial Intelligence and Statistics. PMLR, 2020.[1]

– Analyze in depth about extra-gradient. Showed that doing multiple step is useless and only gets marginal
improvement.

1.2 Last Time
Our goal is to solve this minmax optimization problem, where the payoff is convex-concave:

min
θ
max
φ

L(θ, φ)

Example 1. Bi-linear minmax:
min
θ
max
φ

(θ − θ∗)TA(φ− φ∗)

Linear in θ and φ, and we have the bi-linear product with a matrix in them.

We learned 3 methods last time:

Definition 2 (Simultaneous Gradient Descent-Ascent(Sim-GDA)).{
θt+1 = θt − ηφt
φt+1 = φt + ηθt

(1)
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Definition 3 (Alternated Gradient Descent-Ascent(Alt-GDA)).{
θt+1 = θt − ηφt
φt+1 = φt + ηθt+1

(2)

Definition 4 (Proximal Point Method). {
θt+1 = θt − ηOθL(θt+1, φt+1)

φt+1 = φt + ηOθL(θt+1, φt+1)
(3)

Although it converges, this is an implicit update and it is not practical.

1.3 Today
Today’s goal is to learn a method that is practical, has similar properties as the proximal point method, but revert the
inconvenient of being an implicit method.

2 Variational Inequality Perspective
Proposing a way to see this update on a more compact way, so that we won’t have lines of equations. At the end, we
only care about the gradient-based updates:

F (θt, φt) :=

(
OθL(θt, φt)
−OφL(θt, φt)

)
We see that everything depends on the pair of (θt, φt):

wt := (θt, φt)

2.1 Examples of the VIP
Example 5 (Sim-GDA). {

θt+1 = θt − ηφt
φt+1 = φt + ηθt

(4)

VIP form:
wt+1 = wt − ηF (wt)

Example 6 (Prox-Point). {
θt+1 = θt − ηφt
φt+1 = φt + ηθt+1

(5)

VIP form:
wt+1 = wt − ηF (wt+1)

Example 7 (Alt-GDA). {
θt+1 = θt − ηφt
φt+1 = φt + ηθt+1

(6)

No applicable to VIP
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2.2 Goal
Our goal is to find a stationary point of the vector fields:

F (w∗) = 0

In zero sum game, this is equivalent to find a nash in the game where the pair is convex concave. We have reduce the
problem to finding a stationary point. We want to follow the vector field until finding it.

3 Extragradient
Proximal Point method:

wt+1 = wt − ηF (wt+1)

Idea is to approximate wt+1 with a gradient step, by doing a simple update step:

wt+1/2 = wt − ηF (wt)

Replace wt+1 by the above approximation, we get:

wt+1 = wt − ηF (wt+1/2)

This is the extragradient, and the method is explicit.

3.1 Exercise
3.1.1 Exercise 1 - Update Rules for EG

Write the updates rules for EG for the following case

min
θ
max
φ

θ, φ

Answer: {
θt+1 = θt − η(φt + ηφt) = θt − η(φt+1/2)

φt+1 = φt + η(θt − ηφt) = φt + η(θt+1/2)
(7)

3.1.2 Exercise 2 - For a small step size

Show that for a small enough step-size:

θ2t + φ2t ≤ pt(θ20 + φ20) where 0 < p < 1

Proof:
θ2t + φ2t = ((θt − η(φt + ηθt))

2 + ((φt + η(θt − ηφt))2

= (θ2 + φ2)(1− η2 + η4)

Therefore EG converges iff η < 1.
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3.2 Standard Assumption
Definition 8 (Monotone operator).

< F (w)− F (w′), w − w′ >≥ 0,∀w,w′

3.2.1 Intuition

Monotonicity implies:
< F (w), w∗ − wt >≥ 0,∀w,w′

It is a generalization of convexity.

3.2.2 Exercice 1: prove F is monotone

For min
θ
max
φ

θTAφ, we have:

F (θt, φt) =

(
Aφ
−ATφ

)
Show that F is monotone.
Proof:

< F (θt, φt)− F (θ′t, φ′t), (θt, φt)− (θ′t, φ
′
t) >

= (φ− φ′)A(θ − θ′)− (φ− φ′)TA(θ − θ′) = 0 ∀θ, θ′, φ, φ′

3.2.3 Examples

Example 9. The vector field

F (x, y) =

(
−y
x− y

)
is monotone.

Example 10. The vector field

F (x, y) =

(
(y − 0.5)(y + 0.5)

−x

)
is not monotone.

A monotone vector cannot have two connected optimal points.

Example 11. The vector field

F (x, y) =

(
−y − x
x− y

)
is monotone.

3.3 Convergence of Extra Gradient (General case)
Recall from the lecture on gradient descent, we had

Lemma 12 (Convergence of Gradient Descent).

‖θt+1 − θ∗‖22 = ‖θt − θ∗‖22 − 2ηg(θt)
T (θt − θ∗) + ‖θt+1 − θt‖22

The second term in the right hand-side is the local progress due to monotonicity and the last term is the error due to
discretization. Roughly, what the lemma says is that we can decrease the distance to the optimum if the inner product
in the second term is positive, meaning we are progressing in the right direction, and if η is small enough, meaning the
error due to discretization is also small. For Extra Gradient, we can show the following similar lemma [1].
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Lemma 13 (Convergence of Extra Gradient).

‖ωt+1 − ω∗‖22 = ‖ωt − ω∗‖22 − 2ηF (ωt+1/2)
T (ωt+1/2 − ω∗) + η2‖F (ωt+1/2)− F (ωt)‖22 − ‖ωt+1/2 − ωt‖22

Again, the second term is the progress due to monotonicity and the term η2‖F (ωt+1/2)−F (ωt)‖22 −‖ωt+1/2 − ωt‖22
is the error due to discretization. Unlike before, if η is small enough the discretization’s error can be made negative
and thus induce progress. We can also enforce ‖F (ωt+1/2)−F (ωt)‖22 not to be too big. The natural assumption to do
so is to say that the vector field operator is Lipschitz.

Definition 14 (Lipschitz Operator). The vector field operator F is Lipschitz if there exists 0 < L <∞ such that

‖F (ω)− F (ω′)‖ ≤ L‖ω − ω′‖

for all ω and ω′.

3.3.1 Examples

Example 15. The vector field

F (x, y) =

(
−y
x− y

)
is Lipschitz.

Proof. We know that
F (ω)− F (ω′) = ∇F (ω̃)(ω − ω′)

with ω̃ ∈ [ω, ω′] so
‖F (ω)− F (ω′)‖ ≤ ‖∇F (ω̃)‖‖(ω − ω′)‖.

Therefore, F is Lipschitz if ‖∇F (ω̃)‖ ≤ L for all ω̃. In our case,

∇F (x, y) =
(
0 −1
1 −1

)
and we know that ‖∇F (x, y)‖ is smaller than its largest singular value

‖∇F (x, y)‖ ≤ σmax
(
0 −1
1 −1

)
<∞.

Thus we can pose

L = σmax

(
0 −1
1 −1

)
to complete the proof.

Example 16. The vector field

F (x, y) =

(
(y − 0.5)(y + 0.5)

−x

)
is Lipschitz if x and y are bounded but is not Lipschitz if x and y go to the infinity.

Example 17. The vector field

F (x, y) =

(
−sign(y)
sign(x)

)
is not Lipschitz.

Proof. Consider a point where the sign of one coordinate changes, for example (x, y) = (1, 0). For ε > 0, we have

‖F (1, ε)− F (1,−ε)‖ = ‖(−1, 1)− (1, 1)‖ = 2
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and
‖(1, ε)− (1,−ε)‖ = 2ε.

Thus, for all ε > 0, L has to be larger than 1
ε because we want

2 = ‖F (1, ε)− F (1,−ε)‖ ≤ L‖(1, ε)− (1,−ε)‖ = L 2ε

but 1
ε →∞ when ε→ 0. The Lipschitz property cannot hold.

If the Lipschitz assumption holds, we know from the lemma 13 on the convergence of the Extra Gradient that

‖ωt+1 − ω∗‖22 ≤ ‖ωt − ω∗‖22 − 2ηF (ωt+1/2)
T (ωt+1/2 − ω∗) + (η2L2 − 1)‖ωt+1/2 − ωt‖22 < ‖ωt − ω∗‖22,

meaning that the distance to the optimum decreases.

3.4 Strongly Monotone Operator
Definition 18. The vector field operator F is strongly monotone if there exists µ > 0 such that

〈F (ω)− F (ω′), ω − ω′〉 ≥ µ‖ω − ω′‖22

for all ω and ω′.

3.4.1 Examples

Example 19. The vector field

F (x, y) =

(
−y
x− y

)
is not strongly monotone.

Proof. For points of the form (x, y) = (x, 0), we have that

〈F (x, y)− F (x′, y′), (x, y)− (x′, y′)〉 = 〈
(

0
x− x′

)
,

(
x− x′

0

)
〉 = 0

Example 20. The vector field

F (x, y) =

(
−y
x

)
is not strongly monotone.

Proof. We have that

〈F (x, y)− F (x′, y′), (x, y)− (x′, y′)〉 = 〈
(
y′ − y
x− x′

)
,

(
x− x′
y − y′

)
〉

= (y′ − y)(x− x′)− (y′ − y)(x− x′)
= 0.

Example 21. The vector field

F (x, y) =

(
−y − x
x− y

)
is strongly monotone.

Proof. We have that

〈F (x, y)− F (x′, y′), (x, y)− (x′, y′)〉 = 1

2
(x− x′)2 + 1

2
(y − y′)2 =

1

2
‖(x, y)− (x′, y′)‖2.

We can choose µ = 1/2.
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3.5 Convergence Result
3.5.1 Theorem:L-Lipchitz operator

If The operator is strongly monotone: (for η = 1/4 L )

‖ωt − ω∗‖22 ≤
(
1− µ

4L

)t
‖ω0 − ω∗‖22 (8)

3.5.2 Proof

Lemma:

‖ωt+1 − ω∗‖2 ≤ ‖ωt − ω∗‖2 − 2ηF (ωt+ 1
2
)T (ωt+ 1

2
− ω∗) + (η2L2 − 1)‖ωt+ 1

2
− ωt‖2 (9)

∵ Strong monotonicity and F (ω∗) = 0 (10)

≤ ‖ωt − ω∗‖2 − 2ηµ‖ωt+ 1
2
− ω∗‖2 + (η2L2 − 1)‖ωt+ 1

2
− ωt‖2 (11)

Since we know that:

‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 =⇒ ‖a‖2 ≤ ‖a‖2 − 1

2
‖a+ b‖2 (12)

Therefore, we can consider a and b as follows:

a = ωt+ 1
2
− ω∗ and b = ωt+ 1

2
− ωt (13)

According to Equ. 11 and 12 we have:

−‖ωt+ 1
2
− ω∗‖2 ≤ ‖ωt+ 1

2
− ωt‖2 −

1

2
‖ωt − ω∗‖2

So geometrically we can consider the distances as follow: by substituting these into Equ. 11 we can get:

‖ωt+1 − ω∗‖2 ≤ ‖ωt − ω∗‖2(1− µη) + 2µη‖ωt+ 1
2
− ωt‖2 + (η2L2 − 1)‖ωt+ 1

2
− ωt‖2︸ ︷︷ ︸

good if µη+2η2L2−1<0

η =
1

4L
=⇒ ηµ+ η2L2 − 1 =

µ

2L
+

1

16
− 1 < 0 (∵ µ < L)

Overall we get:

‖ωt+1 − ω∗‖2 ≤ (1− µ

2L
)‖ωt − ω∗‖2

3.6 Optimistic Method
In optimistic method, we have Extragradient that has the following update:

ωt+1/2 = ωt − ηF (ωt)
ωt+1 = ωt − ηF

(
ωt+1/2

)
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We compute the extrapolated point and then we do update for ωt using the gradient at extrapolated point. Instead of
computing two gradients we can use optimistic method using the past gradient. So we can substitute ηF (ωt) with
ηF (ωt−1/2). Therefore, in optimistic method we have:

ωt+1/2 = ωt − ηF
(
ωt−1/2

)
ωt+1 = ωt − ηF

(
ωt+1/2

)
Now, we can summarize the extrapolation form past as illustrated in figure 3.6 for the Extragradient Method and
figure 3.6 for the Optimistic Method.

Figure 1: The Extragradient method.

Figure 2: The Optimistic method.

Better understating of Optimistic method:

ωt+1 ←ωt − ηF (ωt − ηf (ωt)) ≈ ωt
≈ ωt − ηf (ωt) + η2∇F (ωµ) f (ωt)︸ ︷︷ ︸

corrective term

∇F (ωµ) contains the curvature. And the corrective term is approximating the curvature and push towards the optimum
point.
Figure 3.6 compares the Extragradient and Optimistic Methods.
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Figure 3: The Optimistic method vs. Extragradient Method.
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