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1 Summary
In the previous lecture, we introduced a new method referred to as extragradient. This method serves as an explicit ap-
proximation of the proximal point method, which is implicit and thus hard to implement. Then we defined montonicity
and strong monotonicity for vector fields and found the convergence rates of extragradient in each case. Moreover,
we introduced a variant of extragradient, the optimistic method, and found its convergence rates for monotone and
strongly monotone vector fields as well.

In this lecture we see how it is possible to look at the spectral radius of a particular matrix to assess the convergence of
a given vector field. Needless to say, this particular matrix is constructed from the derivative of the vector field itself.

2 Variational Inequality Perspective (reminder)
One way to formulate the minmax optimization problem is to concatenate the individual gradients. More precisely,
we concatenate the gradient of the first player and minus the gradient of the second player as we can see in definition
1.

Definition 1. F (θt, φt)

F (θt, φt) :=

(
∇Lθ(θt, φt)
−∇Lφ(θt, φt)

)

Note that we will refer to the joint space (θt, φt) as:

wt = (θt, φt)

2.1 Goal
Using this formulation, the minmax problem is solved at a stationary point of the vector field F (θt, φt). We are looking
for w∗ such that :

F (w∗) = 0

In zero sum game, this is equivalent to finding a point where the gradient is 0 for each player. Furthermore, if the game
is convex concave, this is equivalent to find a Nash equilibrium. Even in more challenging games where we are not
sure to have a Nash equilibrium, we can still hope for a local Nash equilibrium.
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3 Gradient Method
For standard Gradient method, the update rule is

wt+1 = wt − ηF (wt) (1)

We can be tempted to compare this to a gradient descent update, but doing so might cause some confusion due to our
intuitive understanding of the word ”descent”. This update rule is indeed a descent of the loss surface w.r.t. parameters
θ, but it is also an ascent of the same surface w.r.t. parameters φ. Remember, this is a minmax problem.
In order to assess the convergence, we look at the distance to the optimum:

||wt − w∗||2

Notice that we did not make any assumption regarding the norm. Hence, it is an arbitrary norm.

4 Spectral Analysis
We look at ||wt+1 − w∗|| in order to see if the distance is increasing or decreasing to the optimum. By replacing with
the update rule, we get:

||wt − w∗|| = ||wt − w∗ − η(F (wt)− F (w∗))|| (2)

Let’s remember that by definition F (w∗) = 0. Also, if wt is close to the optimum w∗, we can approximate F (wt)
with its first order Taylor expansion around w∗:

≈ ||wt − w∗ − η∇F (w∗)(wt − w∗)|| = ||(Id − η∇F (w∗))(wt − w∗)||

From here we simply use the submultiplicative property of the norm to find an upper bound. We finally have:

||wt+1 − w∗|| . ||Id − η∇F (w∗)|| ||(wt − w∗)|| (3)

This result shows that if ||Id − η∇F (w∗)|| ≤ 1, the distance to the optimum will decrease at each step, leading to
convergence. Therefore, we are interested in finding a simple way to verify if ||Id − η∇F (w∗)|| ≤ 1.

4.1 Introducing the Spectral Radius
For any matrix A, there exists a norm such that the norm of the matrix A is approximately equal to the spectral radius
of A:

||A|| ≈ ρ(A) := sup{|λ| : λ ∈ Sp(A)}

Remark on spectral radius

The spectral radius is not a matrix norm.

Proof. Let’s consider the counterexample

M =

(
0 1
0 0

)
The greatest eigenvalue of M is ρ(M) = 0. By definition of any matrix norm, ||M || = 0 ⇐⇒ M = 0, but
in this case M 6= 0. Therefore, the spectral radius of a matrix is not a norm.

Note that this proof is valid for any nilpotent matrix M :Mk = 0 for all integer k.

We can use this property to rewrite equation 3:

||wt+1 − w∗|| . ρ(Id − η∇F (w∗)) ||(wt − w∗)||

Note that this is equivalent to :
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∀ ε, ∃ || · || : ||wt+1 − w∗|| ≤ [ρ(Id − η∇F (w∗)) + ε] ||(wt − w∗)|| (4)

Now, we need to do a spectral analysis of ρ(Id − η∇F (w∗)) in order to assess convergence. In other words, we have
convergence if all the eigenvalues of this matrix are strictly smaller than 1 because it would imply that the distance to
the optimum decreases at each step.

4.2 Convergence
Definition 2 (ρ).

ρ := ρ(Id − η∇F (w∗))

Theorem 1. Let ε ∈ R : ε > 0 and the quantity ρ be defined for a vector field F (as in definition 1) and a standard
update rule (as in equation 1).

1. If ρ < 1, there exists a constant C such that:

||wt − w∗|| ≤ C(ρ+ ε)t

This gives the convergence rate if initialized close enough to the optimum.

2. If ρ > 1 then for almost all initialization, the gradient method does not converge to the optimum.

Proof. The proof actually started at the beginning of section 4. We can pick up from equation 4 and finish it via the
following simple step. Let the distance to the optimum be ||wt − w∗|| ≤ (ρ + ε)||wt−1 − w∗|| after t steps with the
spectral radius ρ and ε > 0. We can recursively replace the distance to the optimum and get:

||wt − w∗|| ≤ (ρ+ ε)||wt−1 − w∗|| ≤ (ρ+ ε)2||wt−2 − w∗|| ≤ ... ≤ (ρ+ ε)t||w0 − w∗|| = C(ρ+ ε)t

1. Keeping in mind that ε > 0, if ρ > 1, then (ρ+ ε) > 1. Thus the distance to the optimum explodes as t→∞,
so there is no convergence.

2. If ρ < 1 and (ρ+ ε) < 1, then the distance to the optimum tends to zero when t→∞. So there is convergence
with rate (ρ+ ε).

Remark on the choice of the norm

Remember that to reach equation 4, we made no assumption with regards to the norm. What if we care about
the L2 norm in particular? In general for a finite dimension d, we have:

∃ c1, c2 : ∀w ∈ Rd c1||w||2 ≤ ||w|| ≤ c2||w||2

In our case, this yields:
c1||wt − w∗||2 ≤ ||wt − w∗|| ≤ C(ρ+ ε)t

Therefore:
∀ε,∃c1 : ||wt − w∗||2 ≤

C

c1
(ρ+ ε)t

We see that fixing a particular norm only scales the constant C and does not affect the convergence rate (ρ+ ε)
in any way. In other words, we might have to do more update steps, but fixing the norm won’t prevent the
method from converging.
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Remark on initialization

Remember that to reach equation 4, we approximated F (wt) as its first order Taylor expansion around w∗.
This implies that we need to initialize close enough to w∗ for the approximation to be true. The exact Taylor
expansion is:

F (wt) = F (w∗) +∇F (w∗)(wt − w∗) +O(||wt − w∗||2)

In order for the first order expansion to be a good approximation, we need O(||wt − w∗||2) to be small. By
definition of the big-O notation,O(||wt−w∗||2) =M ||wt−w∗||2 whereM is an upper-bound on ||∇2F (w)||.
Therefore, we initialize close enough to the optimum if

M ||wt − w∗||2 � ||∇F (w∗)(wt − w∗)||

Example :
F (w) = Aw

∇F (w) = A

∇2F (w) = 0

In this case, M=0 and we have the exact relation F (wt) = F (w∗) + ∇F (wt)(wt − w∗). Consequently, we
can initialize anywhere.

4.3 Partial conclusion
We now have a connection between the convergence (numerical analysis) and the eigenvalues (spectral analysis). In
fact, as long as we initialize close enough to the optimum, the convergence rate for a given vector field F (w) is:

ρ(Id − η∇F (w∗)) = max{|1− ηλ| : λ ∈ Sp(∇F (w∗))}

Where

• |1− ηλ| has to be smaller than 1 for all eigenvalues in order to achieve convergence

• Sp(∇F (w∗)) is the set of all eigenvalues of the vector field’s Jacobian at the optimum

4.4 A practical approach
In our machine learning context,∇F (w∗) is actually the Hessian of the loss (by definition of F ) around the minima and
so it will most likely always be real. Even though the matrix ∇F (w∗) is composed of real elements, the eigenvalues
may be complex numbers. To address this, we look at the square of |1− λ|:

|1− ηλ|2 = 1− 2η<(λ) + η2|λ|2

Where <(λ) is the real part of λ and η is the step size. This approach is convenient because for a small step size, we
can focus only on the real part of the eigenvalues:

|1− ηλ|2 ≈ 1− 2η<(λ) , if η2 � 1

Then, for |1− ηλ| to be smaller than one, we need:

<(λ) > 0,∀λ ∈ Sp(∇F (w∗))

Notice that this condition is similar to a generalization of strong convexity for games. As a matter of fact, we need the
Hessian around w∗ to be definite positive to have convergence. Equivalently, we can say that we want the curvature
around the minima to look like a small bowl in order to converge to the minima.
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Remark on the nature of λ

Sometimes (like for standard gradient descent with a single player and a single loss), the Hessian of the loss
is symmetrical. In these cases, the eigenvalues of the Hessian are real because the eigenvalues of a symmetric
matrix are always real[1].

Proof. Let S be a real and symmetric matrix S ∈ Rn×n : ST = S. Since S is symmetric, it has an eigende-
composition Su = λu with u ∈ Cn and λ ∈ C. Since S is real, we have S∗ = S and

Su = λu ⇐⇒ Su∗ = λ∗u∗

=⇒ u∗>Su = u∗>(Su) = u∗>λu = λ〈u, u〉
=⇒ u∗>Su = (Su∗)>u = (λ∗u∗)>u = λ∗〈u, u〉

Since we consider a general case where u 6= 0, we have λ∗ = λ and thus λ ∈ R.

4.5 Visualisation
In figure 1, the orange points represent (1−λ) ∀λ ∈ Sp(∇F (w∗)). The grey lines show how these points move when
adding the step size η and varying it from 1 to 0. Indeed, every point is at (1,0) if η = 0. The green dots represent
(1− ηλ) when η is somewhere between 0 and 1. The orange dots are actually the particular case η = 1.
We showed that the method will converge only if all eigenvalues respect<(λ) > 0. This condition is easily represented
by the red line in figure 1. More precisely, the condition is fulfilled when all dots are on the left side of the red line. But
this condition is not sufficient to achieve convergence, we also need to have (1− ηλ) < 1 ∀λ. This second condition
is satisfied when all dots are inside the blue circle. If both conditions are satisfied, the method converges.
Figure 2 shows three examples with different sets of values (1− ηλ). In example 1, one of the value is to the right of
the red line, so it cannot converge. In example 2, a value is exactly on the red line, but since we want the real part of λ
to be strictly greater than zero, there is no convergence here either. In example 3, all dots are to the left of the red line.
Thus there exist a step size η for which all dots are inside the blue circle, which in turn indicates convergence.

Figure 1: Nice titre/caption

Once we have been able to put all the values (1 − ηλ) in the blue circle by adjusting η, we now try to put them in
the smallest circle possible. The interpretation is that the convergence rate is given by the largest radius |1 − ηλ|
of the eigenvalues λ (represented as the red circle in figure 3). Coincidentally, the smaller the radius the better the
convergence rate. In other words, the best step size η is the one that puts the eigenvalues in the smallest circle.

4.5.1 Special Case: Gradient Descent

As mentioned earlier, the Hessian ∇F (w) = ∇2g(w) for a regular Gradient Descent is symmetric and it implies that
the eigenvalues are real. This means that the values (1 − ηλ) are always on the real axis as shows figure 4. We note
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Figure 2: Nice titre/caption

Figure 3: Nice titre/caption

the largest eigenvalue L and the smallest µ.
The problem of finding the optimal η can be written as:

min
η

max
i
|1− ηλi|2, 1 ≤ i ≤ n

By symmetry of the problem, we know that the smallest radius circumscribing all values is achieved when the distance
from the origin to (1− L) equals the distance from the origin to (1− µ):

(1− η∗L)2 = (1− η∗µ)2

This equation yields two solutions for η∗. The first one is not interesting as it is η∗ = 0. The second one is:

η∗ =
2

L+ µ

By replacing with the optimal step size found:

ρ(Id − η∗∇2g(w∗)) = max{|1− η∗λ| : λ ∈ Sp(∇2g(w∗))} =
∣∣∣∣1− 2µ

L+ µ

∣∣∣∣ = L− µ
L+ µ
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Figure 4: Nice titre/caption

4.5.2 Reminder on optimization

In the last lectures, we have seen by numerical proof that the convergence for strongly convex and Lipschitz functions
have the following global convergence rate:

g(θt)− g∗ ≤ (1− µ

L
)t(g(θ0)− g∗)

Where the larger µL is, the better the convergence rate. But we have just seen using spectral proof that the convergence
for strongly convex and Lipschitz functions is:

||wt − w∗||2 ≤
(
1− 2µ

L+ µ

)t
||w0 − w∗||2

Since 2µ
L+µ is always larger than µ

L , the spectral proof gives a better convergence rate than the numerical proof. Why
is that? simply because the spectral proof provides a local convergence rate (with stronger assumptions).

Remark on non-smooth cases

The spectral analysis doesn’t work for a non-smooth case because the Jacobian is not continuous. The first
order Taylor approximation made at the start of the lecture does not hold oin this context.

5 Why are games more challenging to optimize (and to analyze) ?
In minimization, we get all the eigenvalues on the real (<) axis, while in games the Jacobian can have imaginary (=)
eigenvalues. Thus it can be way more challenging to solve :

min
η

max
i
|1− ηλi|2, 1 ≤ i ≤ n

In other words it could be more challenging to fit all the value inside the red circle of figure 3 because of the angle ψ.
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Remark on interpretation of ψ

The presense of real and imaginary parts indicates a trade-off between cooperation and adversity in games.
It can be shown that purely cooperative games (also known as potential games) have their eigenvalues on the
real axis, while purely adversarial games (also known as Hamiltonian games) have their eigenvalues on the
imaginary axis.
Moreover, the gradient of the vector field is symmetric for cooperative games and anti-symmetric for adversar-
ial games. Therefore, we can express the vector field’s gradient of any game which is not purely cooperative
or purely adversarial as:

∇F (w∗) = J = S +A

Where ST = S and AT = −A. Since S is symmetric and A is anti-symmetric, they respectively have pure
real and pure imaginary eigenvalues. For a mixed game (both cooperative and adversarial), we thus could be
tempted to interpret the real part x of the eigenvalues λ = x+ iy as the cooperative contribution (from S) and
the imaginary part iy as the adversarial contribution (from A). But this intuition is actually erroneous. It is
only valid for non-mixed games:

if A = 0 =⇒ J = S =⇒ eig(J) ∈ R = eig(S)

and
if S = 0 =⇒ J = A =⇒ eig(J) ∈ R = eig(A)

This leaves the mapping from the real and imaginary parts of the eigenvalues to cooperation and adversity
ambiguous for games which are not purely cooperative or adversarial.

Remark about GANs

In the paper [2], they compute eigenvalues for GANs to see where they are. The result is that the values are
between there is some eigenvalues that have an important imaginary part and some that are pure real values.
One interesting observation is that the gradient penality seems to make GANs more comperative since there is
no more pure real values.

6 Theorem
ρ(Id − η∗∇F (w∗)) ≈ 1−mini<(1/λi)mini<(λi)

Where mini<(1/λi) is equivalent to 1/L
and mini<(λi) to µ.

<(1/λ) = <(λ)
|λ|2

If we have a eigenvalue that is very large but with a real part small, <(1/λ) would be large. That could be an
explanation why gradient descent is very slow, as shown in the paper [3]

7 Conclusion
We have a powerful tool to analyze local convergence of games using spectral analysis.

1. The analysis of games is more challenging because the Jacobian of the vector field ∇F may have imaginary
eigenvalues.

2. For minimization, the Jacobian is a Hessian (thus only has real eigenvalues).

3. The (sufficient) condition for local convergence was to have only eigenvalues with positive real part.
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