
Lecture 11: Wasserstein 
Generative Adversarial 

Nets



Start Recording!
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Reminders
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● Office Hours tomorrow (11-12h)

● Form to fill for the project [link] (in order for me to know the number of 

groups) 

● No lecture next week (Spring Break) 

https://docs.google.com/forms/d/e/1FAIpQLSf5eSnIt-wW_eVH-rJ0jXRahAF7-0AzV9wqCkmkJywXCPb5og/viewform?usp=sf_link


1. WGAN: Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein generative 
adversarial networks." In International conference on machine learning, pp. 214-223. PMLR, 
2017.

2. WGAN-GP: Gulrajani, Ishaan, et al. "Improved training of wasserstein gans." NeurIPS (2017).
3. SN-GAN: Miyato, Takeru, et al. "Spectral normalization for generative adversarial networks." ICLR 

(2018).

References to read for this course:
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Nice website: 
https://www.connectedpapers.com

f-GANs

WGAN

WGAN-GP

FID

Inception Score

SN-GAN

BigGAN

DC-GAN

GANs



● Proposed by Arjovsky et al. [2017]

● Divergence minimization perspective: 

● Standard GAN formulation correspond to minimizing the KL:

Wasserstein GAN



● Proposed by Arjovsky et al. [2017]

● Motivated by the comparisons of “distance” between distributions:

Wasserstein GAN

W: “Earth mover distance”



Full Books about optimal Transport: 
Villani, Cédric. Optimal transport: old and new. Vol. 338. Springer Science & Business Media, 2008.

Optimal Transport

Field medalist

Optimal Transport for ML: 
Peyré, Gabriel, and Marco Cuturi. "Computational optimal transport: With applications to data 
science." Foundations and Trends® in Machine Learning 11.5-6 (2019): 355-607.



Originally formulated by Monge (1781)

Optimal Transport

Source: Villani 2008

More examples in Villani [2008] Section 3



Monge Formulation (discrete case)
Initial Distribution Target Distribution



Monge Formulation (discrete case)
Initial Distribution Target Distribution



Mathematical Formulation (discrete case)
Initial Distribution Target Distribution



Source: https://optimaltransport.github.io/slides/



Source: https://optimaltransport.github.io/slides/



Source: https://optimaltransport.github.io/slides/



Mathematical Formulation (continuous case)

● Continuous case: A bit more involved theoretically. Require measure theory. 
○ https://optimaltransport.github.io/slides/ : course on optimal transport

Continuous Sets Distribution on Y Distribution on X

Transportation Mapping

https://optimaltransport.github.io/slides/


Problems with Monge’s Formulation

● Problem:
We may want to split mass!

● Solution: Mapping Coupling matrix
Sum of Rows

Sum of Columns

Discrete distributions



Problems with Monge’s Formulation

● Problem:
We may want to split mass!

● Solution: Mapping Coupling matrix
Sum of Rows

Sum of Columns

Mass transported 
from xi to yj

Transportation 
cost from xi to xj



Wasserstein distance in the WGAN paper:

Back to Wasserstein Distance

Generalization of the coupling in 
the continuous case



Warm-up in Dimension 1



Motivation for Wasserstein Distance

Gradients
No  Gradients



Max in GANs is a divergence

Dual Formulation

Wasserstein can be written as a max: 

Question: How close are these objectives?



Question: How close are these objectives?

Soft-negative part Soft-positive part

https://www.google.com/search?rlz=1C1CHBF_enCA924CA924&sxsrf=ALeKk02NhJbF7N96upZvY_Y2TmYOW20vTg%3A1613762734668&ei=rhAwYJSmKIy-ggf8yojQBA&q=-+log%281%2Be%5E%28-x%29%29&oq=-+log%281%2Be%5E%28-x%29%29&gs_lcp=Cgdnd3Mtd2l6EAMyBAgAEB4yBAgAEB4yBAgAEB4yBAgAEB4yBggAEAUQHjIGCAAQBRAeMgYIABAFEB4yBggAEAgQHjIGCAAQCBAeMgYIABAIEB46BwgAEEcQsAM6CAgAEAUQChAeUP0OWLQoYKQqaAFwAngAgAFjiAHPA5IBATWYAQCgAQGqAQdnd3Mtd2l6yAEIwAEB&sclient=gws-wiz&ved=0ahUKEwiUtbTU1vbuAhUMn-AKHXwlAkoQ4dUDCA0&uact=5
https://www.google.com/search?rlz=1C1CHBF_enCA924CA924&sxsrf=ALeKk0154a__BPgdDFRw3sc1JWje8z86qw%3A1613762741436&ei=tRAwYMSIGsWzggfW37mABg&q=log%281%2Be%5E%28x%29%29&oq=log%281%2Be%5E%28x%29%29&gs_lcp=Cgdnd3Mtd2l6EAMyBAgAEB4yBAgAEB4yBAgAEB4yBAgAEB4yBggAEAUQHjIGCAAQBRAeMgYIABAIEB4yBggAEAgQHjIGCAAQCBAeMgYIABAIEB46BwgAEEcQsAM6BggAEAcQHlDEmQFYy6YBYPyqAWgBcAJ4AIABYogB4QKSAQE0mAEAoAEBqgEHZ3dzLXdpesgBCMABAQ&sclient=gws-wiz&ved=0ahUKEwiEt9HX1vbuAhXFmeAKHdZvDmAQ4dUDCA0&uact=5


Question: How close are these objectives?

Soft-negative part Soft-positive part

If F gets too good: Vanishing 
gradients for G

If F cannot get “too” good

https://www.google.com/search?rlz=1C1CHBF_enCA924CA924&sxsrf=ALeKk02NhJbF7N96upZvY_Y2TmYOW20vTg%3A1613762734668&ei=rhAwYJSmKIy-ggf8yojQBA&q=-+log%281%2Be%5E%28-x%29%29&oq=-+log%281%2Be%5E%28-x%29%29&gs_lcp=Cgdnd3Mtd2l6EAMyBAgAEB4yBAgAEB4yBAgAEB4yBAgAEB4yBggAEAUQHjIGCAAQBRAeMgYIABAFEB4yBggAEAgQHjIGCAAQCBAeMgYIABAIEB46BwgAEEcQsAM6CAgAEAUQChAeUP0OWLQoYKQqaAFwAngAgAFjiAHPA5IBATWYAQCgAQGqAQdnd3Mtd2l6yAEIwAEB&sclient=gws-wiz&ved=0ahUKEwiUtbTU1vbuAhUMn-AKHXwlAkoQ4dUDCA0&uact=5
https://www.google.com/search?rlz=1C1CHBF_enCA924CA924&sxsrf=ALeKk0154a__BPgdDFRw3sc1JWje8z86qw%3A1613762741436&ei=tRAwYMSIGsWzggfW37mABg&q=log%281%2Be%5E%28x%29%29&oq=log%281%2Be%5E%28x%29%29&gs_lcp=Cgdnd3Mtd2l6EAMyBAgAEB4yBAgAEB4yBAgAEB4yBAgAEB4yBggAEAUQHjIGCAAQBRAeMgYIABAIEB4yBggAEAgQHjIGCAAQCBAeMgYIABAIEB46BwgAEEcQsAM6BggAEAcQHlDEmQFYy6YBYPyqAWgBcAJ4AIABYogB4QKSAQE0mAEAoAEBqgEHZ3dzLXdpesgBCMABAQ&sclient=gws-wiz&ved=0ahUKEwiEt9HX1vbuAhXFmeAKHdZvDmAQ4dUDCA0&uact=5


● Intuition: Prevent discriminator to make gradient explode. 

(because it cannot discriminate arbitrarily well)

● Question: How do I enforce Discrimintor to be 1-Lip???

● Answer 1: Not practical (at least exactly).

● Answer 2: Approximation:
○ Clipping (WGAN)  (very rough approximation)

○ Gradient Penalty (WGAN-GP) (Better but harder to explicitly control the Lipschitz)

○ Spectral Normalization (SN-GAN) (Explicit control… still an approximation)

Real New thing in WGAN: Lipschitz Constraint!!!



● Idea: a NN with bounded 
weights is Lipchitz. 

● Pros: 
○ Fast to compute.
○ Simple to implement.

● Cons:
○ Does not control the Lipchitz 

well. (Very rough 
approximation)

○ Ex: 

Clipping

Gradient 
Descent

Clipping



Gradient Penalty
● Idea: Bounded gradient is equivalent to Lipchitz. 

● Pros: 
○ Tractable
○ Simple to implement (add a loss).

● Cons:
○ Does not control the Lipchitz explicitly. (Very rough approximation)
○ Only care about the Lipchitz on the supports of the distributions. 
○ λ large creates bad attractive points. (Decrease perfs.)

Incentive: Gradients of D close to 1



My takes on The gradient Penalty

We want Gradients 
Smaller than 1 ???

Usually we regularize 
the square (smooth)

Remark: Challenging not to get Biased estimates of the Gradient

Potential Alternative GP:



Spectral Normalization
● Idea: Compute an upper-bound on the Lipschitz

1-Lip non-linearities

● Pros: 
○ Give better results (better control of the Lipchitz)

● Cons:
○ Harder to implement (they did it for us) 
○ Still an approximation of the upper bound.

Spectral Matrix norm



● Villani, Cédric. Optimal transport: old and new. Vol. 338. Springer Science & Business Media, 2008.

● Blog Post WGAN: https://jonathan-hui.medium.com/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

● https://optimaltransport.github.io/slides/

● Computational Optimal Transport : https://arxiv.org/pdf/1803.00567.pdf

Useful Links:
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https://jonathan-hui.medium.com/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490
https://optimaltransport.github.io/slides/
https://arxiv.org/pdf/1803.00567.pdf

