Lecture 15: Extragradient

Start Recording!

2

Reminders

- Office Hours tomorrow with the TAs(11-12)
- Scribes notes of Lecture 7 and 9 are available.

References for this lecture:

- Gidel, Gauthier, et al. "A variational inequality perspective on generative adversarial networks." ICLR 2019
 - Mokhtari, Aryan, Asuman Ozdaglar, and Sarath Pattathil. "A unified analysis of extra-gradient and optimistic gradient methods for saddle point problems: Proximal point approach." *International Conference on Artificial Intelligence and Statistics*. PMLR, 2020.

2.

 Azizian, Waïss, et al. "A tight and unified analysis of gradient-based methods for a whole spectrum of differentiable games." *International Conference on Artificial Intelligence and Statistics*. PMLR, 2020.

$\min_{\theta} \max_{\phi} \mathcal{L}(\theta, \phi)$

Where the payoff is convex-concave.

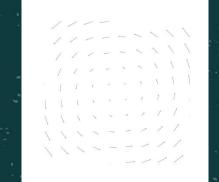
GOAL:

Example: $\min_{\theta} \max_{\phi} (\theta - \theta^*)^\top A(\phi - \phi^*)$

Simultaneous Gradient Descent-Ascent (Sim-GDA):

Alternated Gradient Descent-Ascent (Alt-GDA)

Summary



 $\begin{cases} \theta_{t+1} = \theta_t - \eta \phi_t \\ \phi_{t+1} = \phi_t + \eta \theta_t \end{cases}$

 $\begin{cases} \theta_{t+1} = \theta_t - \eta \phi_t \\ \phi_{t+1} = \phi_t + \eta \theta_{t+1} \end{cases}$

t+1 here????

Proximal Point Method:

$\begin{cases} \theta_{t+1} = \theta_t - \eta \nabla_{\theta} \mathcal{L}(\theta_{t+1}, \phi_{t+1}) \\ \phi_{t+1} = \phi_t + \eta \nabla_{\phi} \mathcal{L}(\theta_{t+1}, \phi_{t+1}) \end{cases}$

Implicit Update: we need to solve a non-linear System

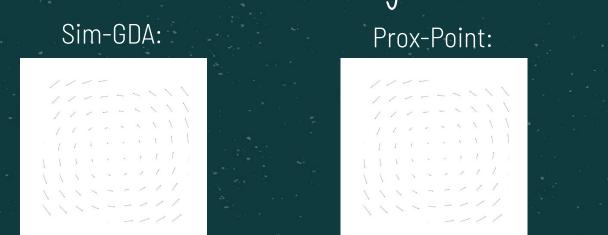
Variational Inequality Perspective

We only 'care' about the gradient-based updates, i.e., the vector field:

$$F(\theta_t, \phi_t) := \begin{pmatrix} \nabla_{\theta} \mathcal{L}(\theta_t, \varphi_t) \\ -\nabla_{\phi} \mathcal{L}(\theta_t, \varphi_t) \end{pmatrix}$$

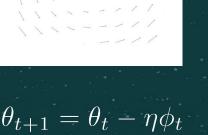
 $\omega_t := (\theta_t, \phi_t)$

Previous plots. We represented the joint space (θ_t, ϕ_t) More compact formalism:



Summary of the VIP

Alt-GDA



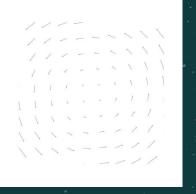
 $\begin{cases} \theta_{t+1} = \theta_t - \eta \phi_t \\ \phi_{t+1} = \phi_t + \eta \theta_t \end{cases}$ $\begin{cases} \theta_{t+1} = \theta_t - \eta \nabla_{\theta} \mathcal{L}(\theta_{t+1}, \phi_{t+1}) \\ \phi_{t+1} = \phi_t + \eta \nabla_{\phi} \mathcal{L}(\theta_{t+1}, \phi_{t+1}) \end{cases}$ $\omega_{t+1} = \omega_t - \eta F(\omega_{t+1})$ $\omega_{t+1} = \omega_t - \eta F(\omega_t)$

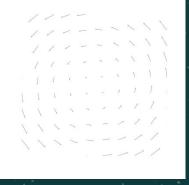
 $\theta_{t+1} = \theta_t - \eta \phi_t$ $\phi_{t+1} = \phi_t + \eta \theta_{t+1}$

???????

Summary of the VIP

Prox-Point:





 $\begin{cases} \theta_{t+1} = \theta_t - \eta \phi_t \\ \phi_{t+1} = \phi_t + \eta \theta_t \end{cases} \begin{cases} \theta_{t+1} = \theta_t \\ \phi_{t+1} = \phi_t \end{cases}$

 $\omega_{t+1} = \omega_t - \eta F(\omega_t)$

 $\begin{cases} \theta_{t+1} = \theta_t - \eta \nabla_{\theta} \mathcal{L}(\theta_{t+1}, \phi_{t+1}) \\ \phi_{t+1} = \phi_t + \eta \nabla_{\phi} \mathcal{L}(\theta_{t+1}, \phi_{t+1}) \end{cases}$

$$\omega_{t+1} = \omega_t - \eta F(\omega_{t+1})$$

$$\begin{cases} \theta_{t+1} = \theta_t - \eta \phi_t \\ \phi_{t+1} = \phi_t + \eta \theta_{t+1} \end{cases}$$

Not the right framework

Variational Inequality Perspective

<u>Goal:</u> Find a stationary point of the vector field:

$F(\omega^*) = 0$

In zero sum game: Equivalent to find a point with 0 gradient for each player

If the game is convex concave: equivalent to find a Nash!

Proximal Point method:

$\omega_{t+1} = \omega_t - \eta F(\omega_{t+1})$

Extragradient

Idea: Approximate $\,\omega_{t+1}\,$ with a gradient step

 $\omega_{t+1/2} = \omega_t - \eta F(\omega_t) \checkmark$

Extragradient

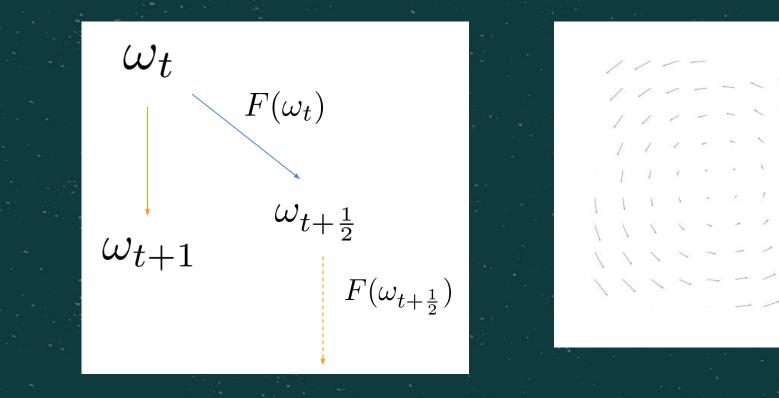
Extragradient:

 $\omega_{t+1} = \omega_t - \eta F(\omega_{t+1/2})$

$\omega_{t+1/2} = \omega_t - \eta F(\omega_t)$

<u>Remark:</u> Now the method is **explicit**!!!

ExtraGradient



Warm-up: Bilinear example

Exercice 1: Write the updates rules for EG for the following case

$\min_{\theta} \max_{\phi} \phi \cdot \theta$

 $\theta_t^2 + \overline{\phi_t^2} \le \rho^t (\theta_0^2 + \phi_0^2)$ where $0 < \overline{\rho} < 1$

Exercice 2: Show that for a small enough step-size:

Standard Assumption

Definition: Monotone operator

$$\langle F(\omega) - F(\omega'), \omega - \omega' \rangle \ge 0, \quad \forall \omega, \omega$$

Intuition: Generalization of convexity.

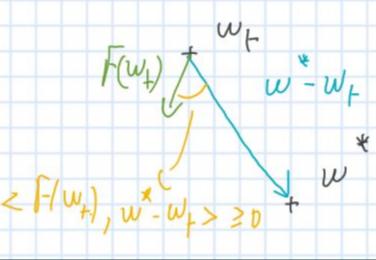
Exercice1: Show that f is a convex function then ∇ f is a monotone operator.

Exercice2: For $\underset{\phi}{\min\max\phi} \overset{\phi}{}^{\top}A\phi$ we have $F(\theta,\phi) = \begin{pmatrix} A\phi \\ -A^{\top}\theta \end{pmatrix}$

Show that Fismonotona

Intuition

Monotonicity implies: $\langle F(\omega), \omega^* - \omega_t angle \geq 0$



-Example 1:

1.1.1.1.1

1 1

1 1

$$F(x,y) = \begin{pmatrix} -y \\ x-y \end{pmatrix}$$

Examples

Example 2:

$$F(x,y) = \begin{pmatrix} (y-.5)(y+.5) \\ -x \end{pmatrix}$$

* *

1

1

4-4

11111

1

1

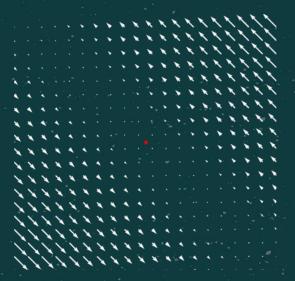
1

1

*

Example 3:

$$F(x,y) = \begin{pmatrix} -y - x \\ y + x \end{pmatrix}$$



Convergence of Extra Gradient (General case)

Lemma for Gradient Descent:

Error due to discretization

 $\|\theta_{t+1} - \theta^*\|_2^2 = \|\theta_t - \theta^*\|_2^2 - 2\eta g(\theta_t)^\top (\theta_t - \theta^*) + \|\theta_{t+1} - \theta_t\|_2^2$

Lemma for EG:

Distance to the optimum

Local Progress thanks to monotonicity

 $\|\omega_{t+1} - \omega^*\|_2^2 = \|\omega_t - \omega^*\|_2^2 - 2\eta F(\omega_{t+1/2})^\top (\omega_{t+1/2} - \omega^*) + \eta^2 \|F(\omega_{t+1/2}) - F(\omega_t)\|_2^2 - \|\omega_{t+1/2} - \omega_t\|_2^2$

Error due to discretization

Convergence of Extra Gradient (General case)

Lemma for Gradient Descent:

Error due to discretization

 $\|\theta_{t+1} - \theta^*\|_2^2 = \|\theta_t - \theta^*\|_2^2 - 2\eta g(\theta_t)^\top (\theta_t - \theta^*) + \|\theta_{t+1} - \theta_t\|_2^2$

Lemma for Question: (Hattie) Can we tell where does Gradient Fail?

попосопнетсу

$$\omega_{t+1} - \omega^* \|_2^2 = \|\omega_t - \omega^*\|_2^2 - 2\eta F(\omega_{t+1/2})^\top (\omega_{t+1/2} - \omega^*) + n^2 \|F(\omega_{t+1/2}) - F(\omega_t)\|_2^2 - \|\omega_{t+1/2} - \omega^*\|_2^2$$

Error due to discretization

Need to control the Error Term

Error Term:

$+\eta^2 \|F(\omega_{t+1/2}) - F(\omega_t)\|_2^2 - \|\omega_{t+1/2} - \omega_t\|_2^2$

Want this to be not too big

Negative term!!!!

Lipschitz Operator:

$\|F(\omega) - F(\omega')\| \le L\|\omega - \omega'\|$

Example 1:

. . .

•

$$F(x,y) = \begin{pmatrix} -y \\ x-y \end{pmatrix}$$

1 1 1

1 1

.

Examples

Example 2:

$$F(x,y) = \begin{pmatrix} (y-.5)(y+.5) \\ -x \end{pmatrix}$$

11

11

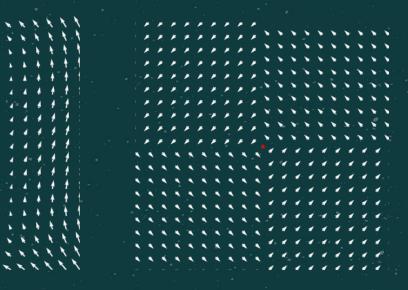
A 1

A 4

4 4-1

Example 3:

$$F(x,y) = \begin{pmatrix} -sign(y) \\ sign(x) \end{pmatrix}$$



Examples

Example 1:

.

Example 2:

 $F(x,y) = \begin{pmatrix} (y-.5)(y+.5)\\ -x \end{pmatrix}$

XXX

 $F(x,y) = \begin{pmatrix} -y \\ x-y \end{pmatrix}$

Example 3:

$$F(x,y) = \begin{pmatrix} -sign(y) \\ sign(x) \end{pmatrix}$$

📫 Question: (Hattie) How do we check Lipschitzness in practice?

* * * * * * * *

7	v	7	•												_	_	
													Α.	1	4-	4	
۷																	1
											4	4	4	1	4-		
																	١.
										- A **	4	4	1.	4			1
																	١.
											1	¥.,	4	4	4		1
																	1
							1. I		4		1	1	4				1
								1	1	1	4	1	1	1	1		1
•	•		۰.	•	•	•	•			.	×.	٢.	٠.	· ,	1		
					-		1	1		- A	1	1	1	1	1		
•	•	•	•	•	•		.	- *	1	ſ.,	٢.	17	٠,	1	' A		
			_	_	-	1	1	1	1	1	1	1	1	1	7		
•	-	•	•		- *		^	1		1	٠.	1.	٠,	ʻ.	'4		
			_	~	1	1	1	1	. 1	1	1	1	1	1	· 7		
-	•	*	*	~	~	~	<i>•</i>		1	٢.	٠.	1	1	'	1		
	_	_	-	-	1	1	1	1	1	1	1	1	1	1	1		
~	~	~	~	~	~			· ·	7 .	· /	1	'	'	· ·	· ·		

Convergence ExtraGradient

<u>Lemma for EG + Monotonicity:</u>

Distance to the optimum

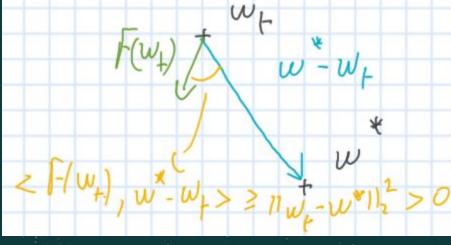
Local Progress thanks to monotonicity

S

Strongly Monotone Operator

Definition: Strongly Monotone operator (generalization of strongly convex functions)

$$F(\omega) - F(\omega'), \omega - \omega' \ge \mu \|\omega - \omega'\|_2^2$$



Example 1:

1,1,1,11

1.1

$$F(x,y) = \begin{pmatrix} -y \\ x-y \end{pmatrix}$$

*

11

1

1

1 1

1,1

Examples

Example 2:

$$F(x,y) = \begin{pmatrix} -y \\ x \end{pmatrix}$$

Example 3:

$$\Gamma(x,y) = \begin{pmatrix} -y-x\\ x-y \end{pmatrix}$$

ι	1	1	¥	¥	1	¥	¥	¥	¥	×	×	*	-	-	-	-	-	-		
i.	i.	į.	÷.	4	+	*	۶	۶	¥	/	*	/	*	-	*	*	+	-	-	
i.	1	į.	् _र	÷	*	۶	۶	۶	۶	,	*	*	*	*	*	*	+	+	-	
Ľ	i.	÷	÷	*	*		۲	۲	۶	>			-	-	*	+	+	+	+	
Ň.	4	÷	÷	•			۲	•	,	^	•		-	-	-	+	*	*	+	
1	4	4	•		Y								.4	-	-	*		-	•	
÷.		4			-									۲	-	-	-	*	7	
ì		ì			•	۰.									-	-	-	*	*	
2	1			4	•										-	-	*	. *	×	
2	ì				-										•	•	*		Ň	
੍ਹੇ															•	``	•	Ň	*	
					÷.,											•	•	×	N	
2																	•		×	
								-				4				•	- h		h	
												4					•	ł	- 4	
																		ĥ	1	
															-	Ā	i	ł	- 1	
				1													i	- i	4	
																1			4	
					1	1							1				- 1			
	_								7	• •	~		- 1	- '	_ /	- '	- 1	-		

Convergence Result

Theorem: L-Lipchitz operator1. If The operator is strongly monotone: (for \eta = 1/4L)

 $\|\omega_t - \omega^*\|_2^2 \le (1 - \frac{\mu}{4L})^t \|\omega_0 - \omega^*\|_2^2$

 $\|\omega_t - \omega^*\|_2^2 \to 0$

If the Operator is monotone: (be can get better than this)

Convergence Result

Theorem: L-Lipchitz operator

If The operator is strongly monotone: (for \eta = 1/4L)

 $\|\omega_t - \omega^*\|_2^2 \le (1 - \frac{\mu}{4L})^t \|\omega_0 - \omega^*\|_2^2$

 $\|\omega_t - \omega^*\|_2^2 \to 0$

If Question: (Safwen) Why 1/4 ???

Optimistic Method

Extragradient:

$\omega_{t+1/2} = \omega_t - \eta F(\omega_t)$ $\omega_{t+1} = \omega_t - \eta F(\omega_{t+1/2})$

Idea: Since $\,\omega_tpprox\omega_{t-1/2}$ and we have already computed $\,F(\omega_{t-1/2})$

Optimistic method:

$$\omega_{t+1/2} = \omega_t - \eta F(\omega_{t-1/2})$$

$$\omega_{t+1} = \omega_t - \eta F(\omega_{t+1/2})$$

Optimistic method

Optimistic method:

$\overline{\omega_{t+1/2}} = \omega_t - \eta F(\omega_{t-1/2})$ $\omega_{t+1} = \omega_t - \eta F(\omega_{t+1/2})$

Equivalent formulation: (standard)

 $\overline{\omega_{t+1/2} = \omega_{t-1/2} - 2\eta F(\omega_{t-1/2})} + \eta F(\omega_{t-3/2})$

Optimistic method

Take home message:

Optimistic method and Extragradient are very similar and have convergence results that are relatively equivalents.

Eq. Questions:

 ω

- (Mathieu and Carl) What if we do several extrapolations steps?
- (Andjela) What happens if the vector field is **not** monotone?
- (Pierluca) Can we go beyond saddle point games?

Useful Links and refs:

Mescheder, Lars, Andreas Geiger, and Sebastian Nowozin. "Which training methods for GANs do actually

converge?." International conference on machine learning. PMLR, 2018.

- Mescheder, Lars, Sebastian Nowozin, and Andreas Geiger. "The numerics of gans." NeurIPS (2017).
- Azizian, Waïss, et al. "A tight and unified analysis of gradient-based methods for a whole spectrum of differentiable games." AISTATS, 2020.
- Sion, Maurice. "On general minimax theorems." *Pacific Journal of mathematics* 8.1 (1958): 171-176.