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Summary
Task: Minimize a function over an intersection of convex sets.
Problem: Projections or linear minimization oracle (LMO) over the in-
tersection is expensive. Projection onto each individual set is expensive.
Our solution:
•Minimize a smooth function over an intersection of constraints.

•Requires linear minimization oracles over individual constraints.

•Based on the Augmented Lagrangian Method.
Motivating applications: Multiple sequence alignment. Structured
SVM. Simultaneously sparse and low rank matrices.

Related work

Algorithm (GDMM) proposed in Yen et al. [4, 3], Huang et al. [2] but
restricted to polytopes and simple (linear and quadratic) functions.

Contributions
•Extension of GDMM for general convex sets.

•Major fix of the previous proofs.

Overview

Initial Problem

minimize
x(1),...,x(k)

f (x(1), . . . ,x(k)) ,

x(k) ∈ Xk, k ∈ [K],
K∑
k=1

Akx
(k) = 0 ,

•f convex smooth function.

•Xk, k ∈ [K], convex compact sets.

•Ak ∈ Rd×dk, k ∈ [K].

Intersection of two sets:
n = 2, A1 = −A2 = In
⇒ x(1) = x(2)

Marginal polytope:

α1 α2 α3

x(1) x(2)

A1x
(1) = A2x

(2)

Examples

Augmented Lagrangian formulation

•Augmented Lagrangian trick to get rid of
∑K

k=1Akx
(k) = 0.

• Introduce M s.t. Mx = 0⇔
∑K

k=1Akx
(k) = 0 and the function

L(x,y) := f (x) + 〈y,Mx〉 + λ
2‖Mx‖2.

•maxy∈RdL(x,y) = f (x) if Mx = 0 or +∞ otherwise.

Augmented Lagrangian formulation of our initial problem,

minimize
(x(1),...,x(K))

max
y∈Rd

L(x(1), . . . ,x(K),y)

s.t. x(k) ∈ Xk, k ∈ {1, . . . , K} .

Problem Formulations

FW-AL

xt+1 = arg min
x∈X

L(x,yt)) ,

yt+1 = yt + ηtMxt+1 ,

Standard AL method
Replace arg min steps by FW steps:

xt+1 = FW(xt;L(·,yt)) .

yt+1 = yt + ηtMxt+1 .

FW algorithm

Algorithm 1 FW (one step) : [1]
1: input: (x, ϕ)
2: Compute r ← ∇ϕ(x)
3: Compute s← arg min

s∈X
〈s, r〉

4: γ ∈ arg minγ∈[0,1]ϕ(x + γ(s− x))

5: Update x← (1− γ)x + γs
6: return: x

Algorithm

Assumption

Slater’s condition: ∃x(k) ∈ relint(Xk), k ∈ [K] s.t.
K∑
k=1

Akx
(k) = 0 .

For general convex sets

With decreasing step size ηt := O
(

1
t+1

)
,

subopt: ∆t ≤
O(1)

t
, feasibility: min

t0≤s≤t
‖Mxs‖2 ≤ O(1)

t
.

For X a polytope
With small enough constant step size ηt:

∆t ≤
∆t0

(1 + κ)t−t0
, ‖Mxt+1‖2 ≤ O(1)

(1 + κ)t−t0
.

Uses a variant of FW with away-step and holds only for generalized
strongly convex function.

Theoretical Results

Multiple Sequence Alignment

Proposed by Yen et al. [4]:

min
W∈A∩P

〈W,D〉

D: cost matrix. A : alignment constraint.
P : consensus constraint.

Structured SVM

Proposed by Yen et al. [3]:

dual problem: min
αf∈∆|Yf |

1

2

∑
F∈T

‖AFα‖2
2 −
∑
j∈V

δ>j αj

s.t. Mfiαf = αi , f ∈ F, F ∈ T , i ∈ N (f ) .

V : set of variables. T : set of factor templates. N (f ): neighbors of f .

Motivating Applications

Given Σ̂ � 0, the objective function is defined as

min
S�0 , ‖S‖1≤β1 , ‖S‖∗≤β2

‖S − Σ̂‖2
2 .

•Oracle over `1-ball: largest coefficient O(d2).

•Oracle over trace-norm all: largest eigen-value O(d2/
√
ε) (Lanczos).
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FW-AL Vs. Baseline
Linear oracle on B∗
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Percentage of the support recovered by FW-AL and the Forward backward
algorithm as a function of time. As the dimension increase the projection
take more and more time to be performed.

Simultaneously Sparse and Low Rank Matrices

[1] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics, 1956.

[2] X. Huang, I. E.-H. Yen, R. Zhang, Q. Huang, P. Ravikumar, and I. Dhillon. Greedy direction method of
multiplier for MAP inference of large output domain. In AISTATS, 2017.

[3] I. Yen, X. Huang, K. Zhong, R. Zhang, P. Ravikumar, and I. Dhillon. Dual decomposed learning with
factorwise oracle for structural SVM with large output domain. In NIPS, 2016b.

[4] I. E.-H. Yen, X. Lin, J. Zhang, P. Ravikumar, and I. Dhillon. A convex atomic-norm approach to multiple
sequence alignment and motif discovery. In ICML, 2016a.

References


