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Summary
Task: Minimize a function over an intersection of convex sets.
Problem: Projections or linear minimization oracle (LMO) over the in-

tersection is expensive. Projection onto each individual set is expensive.
Our solution:
e Minimize a smooth function over an intersection of constraints.

e Requires linear minimization oracles over individual constraints.

e Based on the Augmented Lagrangian Method.
Motivating applications: Multiple sequence alignment. Structured

SVM. Simultaneously sparse and low rank matrices. )

Related work .

-

Algorithm (GDMM) proposed in Yen et al. [4, 3], Huang et al. [2] but

restricted to polytopes and simple (linear and quadratic) functions.
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e Extension of GDMM for general convex sets.
_® Major fix of the previous proofs. )
Problem Formulations
. Initial Problem .
Examples
T f(m(1>, - ,m(k)) | Intersection of two sets:
.t i n=2 A =-4 =1,
(1) — 22
Marginal polytope:
e f convex smooth function.
o X, k € |K|, convex compact sets.
dxd
o A, € R [ & [K] Alx AQQZ
- _J/
_ Augmented Lagrangian formulation .
e Augmented Lagrangian trick to get rid of 25:1 Are®) = 0.
e Introduce M s.t. Max =0 & 25:1 Apx™ = 0 and the function
L(x,y) = f(x)+ (y, Mx) + 5| Mz|".
o max,cr: L(x,y) = f(x) if Max =0 or +00 otherwise.
Augmented Lagrangian formulation of our initial problem,
minimize max L(z'Y, ... ™) y)
(xW),...,2H)) yeR?
st. M ex, ke{l,...,K}.
\ %
Algorithm
p FW-AL .
Standard AL method Replace arg min steps by FW steps:
LTpi = arg%eril(in L(x,y)), i = FW(xe L y,)) -
Y1 = Y + M, Y1 =Yt + M.
FW algorithm ’
a2 )
. Algorithm 1 FW (one step) : [1]
1. input: (x, @)
" 2. Compute r < V()
3. Compute s <— argmin (s, 1)
seX
4 7y € argmin, ¢ 1] (€ + (s — )
. O 5 Update & < (1 —v)x + vs
- 6: return: x
- J

Theoretical Results
4 K )

Slater’s condition: Fx* € relint(Xy), k € [K] s.t. ZAkw(k> —

N k=1 Y,
§ For general convex sets .
With decreasing step size 1, := O (H%)
O(1 O(1
subopt: A; < 0 . feasibility: min || Mz,||* < ﬁ .
g t to<s<t { )

For X' a polytope .

"With small enough constant step size 7

O(1)
(14 k)it

Uses a variant of FW with away-step and holds only for generalized
\strongly convex function.
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Motivating Applications
/ Multiple Sequence Alignment .
5 6
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Proposed by Yen et al. [4]: Ny A 40
ol &L (  ontace )
min (W, D) R S TS I e v
WeANP G s L
e e
D: cost matrix. A : alignment constraint. JEEELS BN
. A A anv €Ay [
P : consensus constraint. wILTAG
o =
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. Structured SVM .

Proposed by Yen et al. [3]:

dual problem:  min Z | Apa||5 — Z(ST&]

Vel 9

S.t. Minzf:Oéi, fEF,FET,iEN(f).

|V @ set of variables. 7 : set of factor templates. N (f): neighbors of f

Simultaneously Sparse and Low Rank Matrices

Given Y > 0, the objective function is defined as

min IS — 2%
S=0, [[Si<B1, [15]:<5:

e Oracle over /-ball: largest coefficient O(d?).

e Oracle over trace-norm all: largest eigen-value O(d*/+/c) (Lanczos).

1.0~ —am Forward-backward : .
o FW-AL A=1, =104 - —=— FW-AL Vs. Baseline

0.8- == FW-AL \ =20, n=10"* ¢ —e— Linear oracle on B,

—e— FW-AL A=1,n=1 —e— Projection on B,
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Seconds Dimension

Percentage of the support recovered by FW-AL and the Forward backward

algorithm as a function of time. As the dimension increase the projection
take more and more time to be performed.
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