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Summary
Generative modeling of high dimensional data, like images, is notoriously
difficult and ill-defined. It is not obvious how to specify relevant
evaluation metrics and meaningful objectives to optimize. In this
work, we give arguments why adversarial divergences are good ob-
jectives for generative modeling, and perform experiments to better
understand their properties.

Contributions
•Unify structured prediction and generative adversarial networks using

statistical decision theory. Relate theoretical results on struc-
tured losses with the notion of weak and strong divergences.
•Show that compared to traditional divergences, adversarial divergences

are a good objective in terms of sample complexity, computation,
ability to integrate prior knowledge, flexibility and ease of optimization.
•Show experimentally the importance of choosing a divergence that re-

flects the final task.

Overview

Problems with KL divergence
Maximimum Likelihood Estimation (MLE), or minimizing the Kullback-
Leibler divergence KL(p||qθ) = Ex∼p[log p(x)

qθ(x)] have several drawbacks,
including:
•No meaningful training signal when p and qθ are far away. Workarounds generally

involve smoothing qθ, which makes it hard to learn sharp distributions.
•Requires evaluating qθ(x), so cannot be directly used with implicit models.
•Teacher-forcing on autoregressive models.
•Hard to enforce properties that characterize the final task.

Adversarial Divergences
We define (neural) adversarial divergences as
Adv∆(p||qθ)=̂ supφ∈Φ E(x,x′)∼p⊗qθ[∆(fφ(x), fφ(x

′))]

where the choice of the discriminator neural network fφ and function ∆

determine properties of the adversarial divergence. For instance, the ad-
versarial Jensen-Shannon from GANs writes
AdvJS(p||qθ)=̂ supφ∈Φ Ex∼p[log fφ(x)] + Ex′∼qθ[log(1− fφ(x′))]

Other adversarial divergences: adversarial Wasserstein, MMD-GANs, ...

Context and Motivation

General Framework

•P : set of possible states.
•A: set of actions available.
•Lp(a): cost of playing action a ∈ A

when the current state is p ∈ P .
•Goal: find a ∈ A minimizing the

(statistical) task loss Lp(a).

Building a Task Loss

MLE, Structured Prediction (SP) and GANs
P A Lp(a)

MLE {p(x)} {qθ ; θ ∈ Θ} Ex∼p [− log(qθ(x))]

SP {p(x,y)} {hθ ; θ ∈ Θ} E(x,y)∼p [`(hθ(x),y,x)]

GAN {p(x)} {qθ ; θ ∈ Θ} sup
f∈F

E(x,x′)∼p⊗qθ[∆(f (x), f (x′))]

where ` : Y × Y × X → R is a structured loss function, while the class of discriminators F and
∆ : Rd′ × Rd′ → R determine properties of the adversarial divergence.

Consequences
•Analogy between choice of structured loss ` and class of discriminators
F in order to build a statistical task losses that reflect the final task.
• Insights from theoretical structured prediction (Osokin et al. [1]).

Statistical Decision Theory Framework

Intuition
•Strong losses such as the 0-1 loss are hard to learn because they do

not give any flexibility on the prediction. We roughly need as many
training examples as |Y|, which is exponential in the dimension of y.
•Conversely, weaker losses like the Hamming loss have more flexibility;

because they tell us how close a prediction is to the ground truth, less
example are needed to generalize well.

Theory to Back the Intuition
Formalize the intuition and compare the 0-1 loss to the Hamming loss,

`0−1(y,y
′)=̂1 {y 6= y′} , `Ham(y,y′)=̂

1

T

T∑
t=1

1{yt 6= y′t}

when y decomposes as T = log2 |Y| binary variables (yt)1≤t≤T . They
derive a worst case sample complexity to get an error ε > 0 and obtain,
•For 0-1 loss: O(|Y |/ε2) (exponential). ⇒ BAD!
•For Hamming lossa: O(log2 |Y|/ε2) (polynomial) ⇒ GOOD!

aunder certain constraints, see [1]

Insights
Flexible statistical task losses, which can “smoothly” distinguish be-
tween good and bad models, are easier to optimize in the context of
structured prediction, which can be related to the belief that weaker
adversarial divergences are easier to optimize in generative mod-
eling.

Results by Osokin et al. [1]

Statistical and computational properties
Divergence Sample Comp. Computation Integrate Final Loss
f-Div (EXPL) O(1/ε2) MC, O(n) no
f-Div (IMPL) N/A N/A N/A
Wasserstein O(1/εd+1) Sinkhorn, O(n2) in base distance
MMD O(1/ε2) analytic, O(n2) in kernel
Adversarial O(p/ε2) SGD in discriminator

EXPL and IMPL stand for explicit and implicit models, and p is the VC- dimension/number of parameters
of the discriminator.

Adversarial vs. Traditional Divergences

1. Importance of sample complexity

Images generated by the
network after training
with the Sinkorn-Autodiff
algorithm on MNIST
dataset (left) and
CIFAR-10 dataset (right).

2. Robustness to Transformations
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3. Learnability of Divergences

Linear Dense CNN

Experiments
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