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Why Frank-Wolfe is wonderful.

I Constrained optimization algorithm:

min
x∈C

f(x)

f convex, C convex compact.
I Interesting for highly structured constraint sets:

Alignment constraint: [Alayrac
et al., 2016]

Permutahedron: [Lancia and
Serafini, 2018] [Evangelopoulos

et al., 2017]
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Why Frank-Wolfe is wonderful.

I Constrained optimization algorithm:

min
x∈C

f(x)

f convex, C convex compact.

I Interesting when projection is not practical:

Projection Linear Minimization Oracle

I When projection is practical better use projected gradient
method.
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Why Frank-Wolfe sometimes is not enough.

I FW requires linear minimization (LMO) over these set.

LMO(d) := arg min
x∈C

〈d,x〉

I Intersection of constraint sets: C1 ∩ C2.
I LMOC1∩C2(d) may be too expensive.

I FW-AL just requires LMOC1(d) and LMOC2(d).
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Simultaneously sparse and low rank matrix recovery

Proposed by Richard et al. [2012]:

min
S�0,‖S‖1≤β1,‖S‖∗≤β2

‖S − Σ̂‖22 .

I Sparcity constraint: C1 := {S � 0, ‖S‖1 ≤ β1},

LMOC1(D) = Largest coefficient of the matrix: O(d2)

I Low rank constraint: C2 := {S � 0, ‖S‖∗ ≤ β2}.

LMOC2(D) = Largest eigenvector: O(d2/
√
ε)
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Multiple sequence alignment

Proposed by Yen et al. [2016a]:

min
W∈A∩P

〈W,D〉

I W : alignment the sequences. D: cost matrix.
I A : alignment constraint. Each alignment with the

consensus sequence is valid.
I P : consensus constraint. Alignments consistent between

each other.
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Structured SVM

Proposed by Yen et al. [2016b]:

dual problem: min
αf∈∆|Yf |

1
2
∑
F∈T
‖AFα‖22 −

∑
j∈V

δ>j αj

s.t. Mfi αf = αi , f ∈ F, F ∈ T , i ∈ N (f) .

I V : Variables. T : Factor templates. N (f): neighbors of f .

I Consistency constraint: M11x
(1) = α1,M12x

(1) = α2, . . .

α1 α2 α3
x(1) x(2)
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General Formulation

minimize
x(1),...,x(k)

f(x(1), . . . ,x(k)) ,

x(k) ∈ Ck, k ∈ [K],
K∑
k=1

Akx
(k) = 0 .

I f is convex and smooth (gradient Lipschitz).
I Ck, k ∈ {1, . . . ,K} are convex compact.
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Augmented Lagrangian Method

I Augmented Lagrangian trick to get rid of ∑K
k=1Akx

(k) = 0.
I M s.t. Mx = 0⇔∑K

k=1Akx
(k) = 0 and the functions,

L(x,y) := f(x) + 〈y,Mx〉+ λ
2‖Mx‖2.

p(x) := max
y∈Rd

L(x,y) =
{
f(x) if Mx = 0 ,
+∞ otherwise.

I Augmented Lagrangian formulation of our problem,

minimize
x

max
y∈Rd

L(x,y)

s.t. x ∈ X := ×Kk=1Ck .
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FW-AL algorithm

minimize
x

max
y∈Rd

L(x,y)

s.t. x ∈ X := ×Kk=1Ck .

I Standard AL method:xt+1 = arg min
x∈X

L(x,yt) (argmin step) ,

yt+1 = yt + ηtMxt+1 (Gradient ascent step) .

I Replace arg min steps by FW steps. FW-AL:{
xt+1 = FW(xt;L(·,yt)) (Frank-Wolfe step) ,
yt+1 = yt + ηtMxt+1 (Gradient ascent step) .
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The FW algorithm

Algorithm 1 One Frank-Wolfe step
1: Let x(t) ∈M
2: Compute r(t) = ∇f(x(t))
3: Compute s(t) ∈ argmin

s∈C

〈
s, r(t)〉

4: Compute gt :=
〈
x(t) − s(t), r(t)〉

5: if gt ≤ ε then return x(t)

6: Let γ = 2
2+t (or do line-search)

7: Update x(t+1) := (1− γ)x(t) + γs(t)

↵

f(↵)

M

f

Figure: One step of the FW
algorithm

Gauthier Gidel FW Splitting via ALM April 2018



The FW algorithm

Algorithm 2 One Frank-Wolfe step
1: Let x(t) ∈M
2: Compute r(t) = ∇f(x(t))
3: Compute s(t) ∈ argmin

s∈C

〈
s, r(t)〉

4: Compute gt :=
〈
x(t) − s(t), r(t)〉

5: if gt ≤ ε then return x(t)

6: Let γ = 2
2+t (or do line-search)

7: Update x(t+1) := (1− γ)x(t) + γs(t)

↵

f(↵)

M

f

f(↵) +
⌦

s
0 �↵,rf(↵)

↵

Figure: One step of the FW
algorithm

Gauthier Gidel FW Splitting via ALM April 2018



The FW algorithm

Algorithm 3 One Frank-Wolfe step
1: Let x(t) ∈M
2: Compute r(t) = ∇f(x(t))
3: Compute s(t) ∈ argmin

s∈C

〈
s, r(t)〉

4: Compute gt :=
〈
x(t) − s(t), r(t)〉

5: if gt ≤ ε then return x(t)

6: Let γ = 2
2+t (or do line-search)

7: Update x(t+1) := (1− γ)x(t) + γs(t)

↵

f(↵)

M

f

f(↵) +
⌦

s
0 �↵,rf(↵)

↵

Figure: One step of the FW
algorithm

Gauthier Gidel FW Splitting via ALM April 2018



The FW algorithm
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Related work: GDMM

I Replace arg min step by a FW step initially proposed by
Yen et al. [2016a] to solve MSA problem.

I Afterwards used for Structured SVM [Yen et al., 2016b]
and MAP inference [Huang et al., 2017].

I Restricted to polytopes and simple (linear and quadratic)
functions.

Contributions:
I Extension of GDMM for general convex sets. (e.g. Trace

norm ball)

I Fix a crucial missing part in the previous proofs.

Gauthier Gidel FW Splitting via ALM April 2018



Related work: GDMM

I Replace arg min step by a FW step initially proposed by
Yen et al. [2016a] to solve MSA problem.

I Afterwards used for Structured SVM [Yen et al., 2016b]
and MAP inference [Huang et al., 2017].

I Restricted to polytopes and simple (linear and quadratic)
functions.

Contributions:
I Extension of GDMM for general convex sets. (e.g. Trace

norm ball)

I Fix a crucial missing part in the previous proofs.

Gauthier Gidel FW Splitting via ALM April 2018



Related work: GDMM

I Replace arg min step by a FW step initially proposed by
Yen et al. [2016a] to solve MSA problem.

I Afterwards used for Structured SVM [Yen et al., 2016b]
and MAP inference [Huang et al., 2017].

I Restricted to polytopes and simple (linear and quadratic)
functions.

Contributions:
I Extension of GDMM for general convex sets. (e.g. Trace

norm ball)

I Fix a crucial missing part in the previous proofs.

Gauthier Gidel FW Splitting via ALM April 2018



Related work: GDMM

I Replace arg min step by a FW step initially proposed by
Yen et al. [2016a] to solve MSA problem.

I Afterwards used for Structured SVM [Yen et al., 2016b]
and MAP inference [Huang et al., 2017].

I Restricted to polytopes and simple (linear and quadratic)
functions.

Contributions:
I Extension of GDMM for general convex sets. (e.g. Trace

norm ball)

I Fix a crucial missing part in the previous proofs.

Gauthier Gidel FW Splitting via ALM April 2018



Theoretical contribution

Additional assumption:

Slater’s condition: ∃x(k) ∈ relint(Ck), k ∈ [K] s.t.
K∑
k=1

Akx
(k) = 0 .

New lemma:

Let d be the augmented dual function,

d(y) := min
x∈X
L(x,y) .

There exist a constant α > 0 such that close enough to Y∗,

d∗ − d(y) ≥ αdist(y,Y∗)2.
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Convergence results
I For general convex sets:

With decreasing step size ηt := O
(

1
t+1

)
,

subopt: ∆t ≤
O(1)
t

, feasibility: min
t0≤s≤t

‖Mxs‖2 ≤
O(1)
t

.

I For X a polytope:
With small enough constant step size ηt:

∆t ≤
∆t0

(1 + ρ)t−t0 , ‖Mxt+1‖2 ≤
O(1)

(1 + ρ)t−t0 .

Only holds for generalized strongly convex function and
uses a variant of FW with away-step.

I Standard splitting algorithms have faster rate per
iteration in practice.

I Advantage only comes from the cheaper oracle !
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Experiments

Simultaneously sparse and low rank matrix recovery:

min
S�0,‖S‖1≤β1,‖S‖∗≤β2

‖S − Σ̂‖22 .
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Experiments

LMO vs. projection for trace norm ball:
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Experiments
Support recovered by FW-AL and the generalized forward
backward algorithm as a function of time:
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Conclusion

Task: Minimize a function over an intersection of convex sets.
Problem:

I Projections or linear minimization oracle (LMO) over the
intersection is expensive.

I Projection onto each individual set is expensive.
Our solution:

I Requires linear minimization oracles over individual
constraints.

I Based on the Augmented Lagrangian Method.
Contributions:

I Extension of GDMM for general convex sets.
I Fix a missing part of the previous proofs.
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Thank You !

Slides available on www.di.ens.fr/~gidel and
www-ens.iro.umontreal.ca/~gidelgau.
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