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Overview

v

Frank-Wolfe algorithm (FW) gained in popularity in the
last couple of years.

v

Main advantage: FW only needs LMO.

v

Extend FW properties to solve saddle point problems®.

v

Straightforward extension but Non trivial analysis.

!Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. “Frank-Wolfe
Algorithms for Saddle Point Problems”. In: AISTATS. 2017.
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Overview

v

Frank-Wolfe algorithm (FW) gained in popularity in the
last couple of years.

v

Main advantage: FW only needs LMO.

v

Extend FW properties to solve saddle point problems®.

v

Straightforward extension but Non trivial analysis.

‘ Question for the audience: Call for application

!Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. “Frank-Wolfe
Algorithms for Saddle Point Problems”. In: AISTATS. 2017.
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Saddle point and link with variational inequalities
Let £L: X x Y — R, where X and Y are convex and compact.

Saddle point problem:  solve minmax L(x,y)
reX yey

A solution (z*,y*) is called a Saddle Point.
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Saddle point and link with variational inequalities
Let £L: X xY — R, where X and ) are convex and compact.

Saddle point problem:  solve min max L(x,y)
zcX ye)

A solution (x*,y*) is called a Saddle Point.
» Necessary stationary conditions:

(x—a®, V.L(z",y")) =0
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Saddle point and link with variational inequalities
Let £L: X xY — R, where X and ) are convex and compact.

Saddle point problem:  solve min max L(x,y)
zcX ye)

A solution (x*,y*) is called a Saddle Point.
» Necessary stationary conditions:

(-2, V.L(x",y") >0
(y—vy", -V, L(z",y")) >0
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Saddle point and link with variational inequalities
Let £L: X xY — R, where X and ) are convex and compact.

Saddle point problem:  solve min max L(x,y)
zcX ye)

A solution (x*,y*) is called a Saddle Point.
» Necessary stationary conditions:
(x —x*, V. L(x",y"))
(y—y", -VyL(z",y"))
» Variational inequality:

>0
>0

Vze X xY (z—2z"¢9(z") >0
where (x*,y*) = z* and ¢(z) = (V.L(2), =V, L(2))
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Saddle point and link with variational inequalities
Let £L: X xY — R, where X and ) are convex and compact.

Saddle point problem:  solve min max L(x,y)
zcX ye)

A solution (x*,y*) is called a Saddle Point.
» Necessary stationary conditions:
(x—x*, V. L(x",y"))>0
(y—y", —VyL(z",y") 2 0
» Variational inequality:

Vze X xY (z—2z%49(z")>0

where (x*,y*) = z* and ¢(z) = (V.L(2), =V, L(2))
» Sufficient condition: Global solution if £
convez-concave. ¥(x,y) € X x Y

' — L(x',y) is convex and vy’ — L(x,y) is concave.
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Motivations: games and robust learning

> Zero-sum games with two players:

min max x' My
zeA(I) yeA(J)

2J. Wen, C. Yu, and R. Greiner. “Robust Learning under Uncertain
Test Distributions: Relating Covariate Shift to Model Misspecification.”
In: ICML. 2014.
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Motivations: games and robust learning

» Zero-sum games with two players:

min max My
zeA(I) yeA(J)

» Robust learning:> We want to learn
rerélg ﬁ Zﬂ (folx:), yi) + AQ(0)

with an uncertainty regardlng the data:

Q
ggélgézix sz f@ xz) yi) + A (0)

Minimize the worst case — gives robustness‘

2J. Wen, C. Yu, and R. Greiner. “Robust Learning under Uncertain
Test Distributions: Relating Covariate Shift to Model Misspecification.”
In: ICML. 2014.
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Problem with Hard projection

The structured SVM:

n

, 1
min AQ(w) + - 2 max (Li(y) — (w, ¢i(y)))

~
structured empirical loss
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Problem with Hard projection

The structured SVM:

n

, 1
min AQ(w) + - 2. 3 (Li(y) — (w, 9i(y)))

~
structured empirical loss

Regularization: penalized — constrained.

min  max bla—w! Ma
Qw)<B acA(]Y])
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Problem with Hard projection

The structured SVM:

n

1
min A0 + 2 max (Li(y) — (w, ¢i(y)))

~
structured empirical loss

Regularization: penalized — constrained.

min  max bla—w! Ma
Qw)<B acA(]Y])

Gauthier Gidel  Frank-Wolfe Algorithms for S 12th July 2017



Problem with Hard projection

The structured SVM:

n

1
min A0 + 2 max (Li(y) — {w, ¢i(y)))

~
structured empirical loss

Regularization: penalized — constrained.

min  max bla—w! Ma
Qw)<B acA(]Y])
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Problem with Hard projection

The structured SVM:

n

1
min AQw) + — 2 max (Li(y) — (w, ¢i(y)))

structured empirical loss

Regularization: penalized — constrained.

min max bla—w! Ma
Qw)<B acA(]Y))

Difficult to project when:
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Problem with Hard projection

The structured SVM:

n

1

structured empirical loss

Regularization: penalized — constrained.

min  max bla—w! Ma
Q(w)<B acA(Y))

Difficult to project when:

» Structured sparsity norm (group lasso norm).
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Problem with Hard projection

The structured SVM:

n

1

structured empirical loss

Regularization: penalized — constrained.

min  max bla—w! Ma
Qw)<B acA(]Y))

Difficult to project when:
» Structured sparsity norm (group lasso norm).

» The output ) is structured: exponential size.

Gauthier Gidel Frank-Wolfe Algorithms for SP

12th July 2017



Standard approaches in literature
» Projected gradient algorithm.
2t = Py(a) — v, L(x®,y "))
y ) = Py(y'" + v, L=, y "))

3GM Korpelevich. “The extragradient method for finding saddle points
and other problems”. In: Matecon (1976).
e —— BT i3 July 2017



Standard approaches in literature
» Projected gradient algorithm.
20D = Py(@® — 59,0,y )
Y = Pyy 9, L,y )
» Projected extra-gradient?.
2 = Py(zl) — v, Lz y 1))
g = Py + vy L@,y )

Intuition: lookahead move: look at what your opponent
would do before deciding your move.

2+ — Px(m(w . nvxﬁ(:i:“*”,g(‘“)))
y) = Py + nvy[’(j(wrl)? gy)

Prevents oscillations for non strongly convex objective.

3GM Korpelevich. “The extragradient method for finding saddle points
and other problems”. In: Matecon (1976).
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Standard approaches in literature

» Gradient method works for non-smooth optimization, but

L3 (040) s o)

=1 T—o0

4N. He and Z. Harchaoui. “Semi-proximal Mirror-Prox for Nonsmooth
Composite Minimization”. In: NIPS. 2015.
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Standard approaches in literature

» Gradient method works for non-smooth optimization, but

LS (6049 s )

=1 T—o0

» Extragradient method works for smooth optimization,

(W, y") - (2", y")

4N. He and Z. Harchaoui. “Semi-proximal Mirror-Prox for Nonsmooth
Composite Minimization”. In: NIPS. 2015.
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Standard approaches in literature

» Gradient method works for non-smooth optimization, but

LS (6049 s )

- T—o0

» Extragradient method works for smooth optimization,
(@, y") = (z*, y")

Even when projections are expensive:

Can use LMO to compute approximate projections?.

4N. He and Z. Harchaoui. “Semi-proximal Mirror-Prox for Nonsmooth
Composite Minimization”. In: NIPS. 2015.
Gauthier Gidel Frank-Wolfe Algorithms for SP 12th July 2017



The FW algorithm

Algorithm Frank-Wolfe algorithm

1: Let 2 e X
2: fort=0...T do
3:  Compute r®) = V f(z®)

4:  Compute s¥) € argmin (s,7®))
seX

5. Compute g; := (z®) — s®) r®))
6: if g < e then return z(®

7. Lety= 2L+t (or do line-search)

8:  Update z(*t1) := (1—)ax® +~s®)
9: end for
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The FW algorithm

Algorithm Frank-Wolfe algorithm

1: Let 20 e X
2: fort=0...T do
3:  Compute ) = Vf(x®)

4:  Compute s¥) € argmin (s,7®))
seX

5. Compute g; := (z®) — s®) r®))
6: if g < e then return z(®

7. Lety= 2L+t (or do line-search)

8:  Update z(*t1) := (1—)ax® +~s®)
9: end for
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The FW algorithm

Algorithm Frank-Wolfe algorithm

1: Let 2 e X
2: fort=0...T do
3:  Compute r®) = V f(z®)

4:  Compute st e argmin <s,r(t)>
seX

5. Compute g; := (z®) — s®) r®))
6: if g < e then return z(®

7. Lety= 2L+t (or do line-search)

8:  Update z(*t1) := (1—)ax® +~s®)
9: end for
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The FW algorithm

Algorithm Frank-Wolfe algorithm

1: Let 2 e X
2: fort=0...T do
3:  Compute r®) = V f(z®)

4:  Compute s¥) € argmin (s,7®))
seX

5. Compute g; := (z®) — s®) r®))
6: if g < e then return z(®

7. Lety= 2L+t (or do line-search)

8:  Update (T := (1—)z(®) 4451
9: end for
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SP-FW

Algorithm Saddle point FW algorithm > Originally

proposed by

1: fort=0...7T do —_— Hammond*

V. L(xV) 1) with

. ) .

2:  Compute r v, E(:c(f ) ) o= 1/(t+1).

3. Compute s® € argmin (z,r® >

zeX XY

4:  Compute g; : <z(t) — s(t),r(t)>

5. if g; < e then return z®

6:  Let y =min (1, g;) or v = %t

7. Update 20HD = (1 — ~)z(®) 4 45
8: end for

5J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.
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SP-FW

Algorithm Saddle point FW algorithm > Originally
proposed by
1: fort=0...7T do © 0 Hammond*
t) o (t -
) t) . \Y% £(CC Y ) with
2:  Compute r'" : (:z:(t ,y(t o= 1/(t+1).
3. Compute s® e argmin (z,7®

zeXX)Y

4:  Compute g; : <z(t) — s(t),r(t)>

5. if g; < e then return z®

6:  Let y =min (1, g;) or v = %t

7. Update 20HD = (1 — ~)z(®) 4 45
8: end for

5J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.
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SP-FW

Algorithm Saddle point FW algorithm > Originally
proposed by
1: fort=0...7T do © 0 Hammond*
) :
) t) . Vxﬁ( Y ) with
2: Compute r : —Vyﬁ(w(t), y(t ) vy = 1/(t + 1)

3. Compute s® € argmin (z,r t)>
zeX XY

4:  Compute g; := <z(t) — s(t),r(t)>

5. if g; < e then return z®

6:  Let v = min (1, %!]t) or v = %ﬂ

7. Update 20HD = (1 — ~)z(®) 4 450
8: end for

5J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.
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SP-FW

Algorithm Saddle point FW algorithm > Originally
proposed by
1: fort=0...7T do © 0 Hammond*
) :
) t) . Vxﬁ( Y ) with
2: Compute r : v ﬁ(a}(t)’ y(t ) vy = 1/(t + 1)

3. Compute s € argmin <z,r t)>
zeX XY

4:  Compute g : < (t) — (&) p(t )>

5. if g; < e then return z®

6:  Let y =min (1, g;) or v = 2L+t

7. Update 204D := (1 — 7)z®) 4 s
8: end for

5J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.
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SP-FW

Algorithm Saddle point FW algorithm > Originally
proposed by
1: fort=0...7T do © 0 Hammond*
) :
) t) . \Y% £( Y ) with
2: Compute r : v ,C(a;(t), y(t ) vy = 1/(t + 1)

3. Compute s € argmin <z,r t)>
zeX XY

4:  Compute g; := <z(t) — s(t),r(t)>

5. if g; < e then return z®

6:  Let y =min (1, g;) or v = %t

7. Update 20D := (1 — ~)2(®) 4 4s®)
8: end for

5J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.
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SP-FW

Algorithm Saddle point FW algorithm > Originally
proposed by
1: fort=0...7T do © 0 Hammond*
t) o (t )
) t) . Vxﬁ( Y ) with
2. Compute 7" : —V,L(x®,y®) e=1/(t+1).
3. Compute s®) € argmin (z,r t)> > One can
ZEXXY define FW
4:  Compute g; : <z(t) — s(t), r(t)> extension with
5. if ¢ < e then return z® away step.
6:  Let y =min (1, g;) or v = 2L+t
7. Update 20D := (1 — ~)2(®) 4 4s®)
8: end for

5J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.
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SP-FW

Algorithm Saddle point FW algorithm > Originally

proposed by

1: fort=0...7T do © 0 Hammond*

t) o (t )
. ) . Vxﬁ( Y ) with
2:  Compute r'" := _vyﬁ(zn(t)’ y(t ) =1/t +1).
3 Compute s) € argmin (z,7r t)> > One can
ZEXXY define FW

4:  Compute g := <z(t) — s(t),r(t)> extension with

5. if ¢ < e then return z® away step.

6:  Let y =min (1, &g:) or v = 5% > Cru(lz}al for

7. Update H(t+1) . — (1— ’y)z(t) + ,ys(t) our linear
convergence

8: end for results.

5J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.
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SP-FW

Algorithm Saddle point FW algorithm > Originally
proposed by
1: fort=0...7T do © 0 Hammond*
t) ot )
. t) . Vxﬁ( Y ) with
2:  Compute r'\" : Ry L(:B(t)’ y(t ) =1/t +1).
3 Compute s) € argmin (z,7r t)> > One can
ZEXXY define FW
4 Compute g, : <z(t) — s(t), r(t)> extension with
5. if ¢ < e then return z® away step.
6:  Let y =min (1, &g:) or v = 5% > Cru(lz}al for
7. Update 204D := (1 — 7)z®) 4 s our fmear
convergence
8: end for results.
r =1 =20 =151

5J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.
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SP-FW

Algorithm Saddle point FW algorithm > Originally
proposed by
1: fort=0...7T do © 0 Hammond*
) o(t )
. t) . Vxﬁ( Y ) with
2:  Compute r'*/ : v L(:z:(t),y(t ) = 1/(t+1).
3. Compute s® € argmin (z,r t)> » One can
2EX XY define FW
4:  Compute g; : <z(t) —s®, r(t)> extension with
5. if ¢ < e then return z® away step.
6:  Let y =min (1, &g:) or v = 5% > Cru(lz}al for
7. Update 204D := (1 — 7)z®) 4 s our tinear
convergence
8: end for results.
> = 1+t:>z(t)—1zt s,
5

> (= 1+7‘) + Bilinear objective < fictitious play algorithm.

5J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.
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Advantages of SP-FW

Same main property as FW:

Only LMO (linear minimization oracle).




Advantages of SP-FW

Same main property as FW:

Only LMO (linear minimization oracle).

Same other advantages as FW:

» Convergence certificate g; for free.
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Advantages of SP-FW

Same main property as FW:

‘ Only LMO (linear minimization oracle). ‘

Same other advantages as FW:
» Convergence certificate g; for free.

» Affine invariance of the algorithm.
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Advantages of SP-FW

Same main property as FW:

‘ Only LMO (linear minimization oracle). ‘

Same other advantages as FW:
» Convergence certificate g; for free.
» Affine invariance of the algorithm.

» Sparsity of the iterates.
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Advantages of SP-FW

Same main property as FW:

‘ Only LMO (linear minimization oracle). ‘

Same other advantages as FW:
» Convergence certificate g; for free.

» Affine invariance of the algorithm.

A\

Sparsity of the iterates.

v

Universal step size v := adaptive step size v 1= &gi.

2
241
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Advantages of SP-FW

Same main property as FW:

‘ Only LMO (linear minimization oracle). ‘

Same other advantages as FW:
» Convergence certificate g; for free.

» Affine invariance of the algorithm.

A\

Sparsity of the iterates.
» Universal step size v :=
Main difference with FW:

» No line-search.

%ﬁ, adaptive step size v 1= &gi.
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Advantages of SP-FW

Same main property as FW:

‘ Only LMO (linear minimization oracle). ‘

Same other advantages as FW:
» Convergence certificate g; for free.

» Affine invariance of the algorithm.

v

Sparsity of the iterates.
» Universal step size v :=
Main difference with FW:

» No line-search.

2 ; . ; —
717 adaptive step size v == &g

When constraint set is a “complicated” structured polytope:
projection is difficult whereas LMO is tractable.
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Hypothesis

Similar hypothesis as AFW:
» L is L-smooth and p-strongly convex-concave.

» X and ) polytopes.
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Hypothesis

Similar hypothesis as AFW:
» L is L-smooth and p-strongly convex-concave.
» X and ) polytopes.

» Additional assumption on bilinearity:
L(z,y) = f(z) + 2" My — h(y)

Roughly, ||M || smaller than the strong convexity constant.

D := max{diam(X), diam(Y)}, § := min{ PWidth(X), PWidth(Y)}

Gauthier Gidel Frank-Wolfe Algorithms for SP 12th July 2017



Theoretical contribution

SP extension of FW with away step®:

Linear rate with adaptive Sublinear rate with wuni-
step size 1= %5z gt versal step size y; := %k(t)

1
(]
ming, < O (t)

> k(t) : number of non drop steps, | k(t) > t/3|.

. 2 62 k(t)
wipgs < O0) (1)

SGauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. “Frank-Wolfe
Algorithms for Saddle Point Problems”. In: AISTATS. 2017.
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Theoretical contribution

SP extension of FW with away step®:

Linear rate with adaptive Sublinear rate with wuni-
step size 1= %5z gt versal step size y; := %k(t)

1
(]
ming, < O (t)

> k(t) : number of non drop steps, | k(t) > t/3|.

. 2 62 k(t)
wipgs < O0) (1)

» Proof use recent advances on AFW — growth condition.

SGauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. “Frank-Wolfe
Algorithms for Saddle Point Problems”. In: AISTATS. 2017.
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Theoretical contribution

SP extension of FW with away step”:

Linear rate with adaptive Sublinear rate with uni-
step size V¢ = 720t versal step size  : 2+k(t)
k(t) 1
ing, <O0(1) (1= 125, 41) ing, <O (-
min gs < (1) T I?SI?QS_O ;

> k(t) : number of non drop steps, | k(t) > t/3|.

» Proof use recent advances on AFW — growth condition.

» Partially answering a 30 years old conjecture8

e strongly monotone obj with step size ;=5 over polytope.

t+

"Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. “Frank-Wolfe
Algorithms for Saddle Point Problems”. In: AISTATS. 2017.

8J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.
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Difficulties for saddle point

Usual descent Lemma:

L d(t) 2
hiv1 < he — g +7t2—” “
NG/ 2

>0

With ~; small enough the sequence decreases.



Difficulties for saddle point

Usual descent Lemma:

S LId® |12
o < b o
~~ 2

0]

With ~; small enough the sequence decreases.

For saddle point problem the Lipschitz gradient property gives

L||d® |2
Lijy —L< Ly =L = +7; H2”
N —
» Cannot control the of the sequence.

» Must introduce other quantities to establish convergence.
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Difficulties for saddle point

Standard merit functions: primal + dual gaps

— (t) —mi ®)y >
hy I;léi;}cﬁ(zc ,Y) ggﬁﬁ(w,y ) > 0.

9Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. “Frank-Wolfe
Algorithms for Saddle Point Problems”. In: AISTATS. 2017.
Cauthier Gidel T —— 1555 July 2017



Difficulties for saddle point
Standard merit functions: primal + dual gaps

- () —mi ®)y >
hy I;lg)}}(ﬁ(m . Y) i}rg}(l[,(as,y ) > 0.

Problem: ¢ := arg max,cy L(z®),y) depends on t.

9Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. “Frank-Wolfe
Algorithms for Saddle Point Problems”. In: AISTATS. 2017.
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Difficulties for saddle point
Standard merit functions: primal + dual gaps

- () —mi ®)y >
hy I;léi))}(ﬁ(w . Y) i}l’él}(l[,(l‘,y ) > 0.

Problem: ¢ := arg max,cy L(z®),y) depends on t.

wi = L(xD, y*) — L5+ L£* — L(x*,yD).

(z) (v)

=wy =wy

We have,
O0<w <h <g

In general, w; can be zero even if we have not reached a
solution. But for strongly convex-concave function®”

ht < Cte\/ Wt

9Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. “Frank-Wolfe
Algorithms for Saddle Point Problems”. In: AISTATS. 2017.
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Toy Experiments

» SP-AFW vs. Extragradient with approximate projection.

10 2 Il L Il
\ -1-EG exact proj
“O-EG 1 proj

328 o | L Theoretical step-size
EG 1/t proj
SP-AFW

o]

o

Duality Gap

Y= Gt

EG : [He & Harchaoui NIPS 2015]

T

*
IS v =0.024
®

T T T T
0 2000 4000 6000 8000 10000
Oracle call

I fu
L(z,y) = Slle 2[5+ (@ —2) My - y) - Slly - y’[13

X =Y:=[0,1] od = 30 e (C :=2LD? oL =y
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Toy Experiments
» SP-AFW with heuristic step-size. (When v < 0)

107t C . .
~+ heuristic Heuristic step-size.
:&% heuriﬁs&ic (easier)
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Conclusion

» SP-F'W one of the first SP solver only working with LMO.
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Conclusion

» SP-F'W one of the first SP solver only working with LMO.
» F'W resurgence lead to new structured problems.
» Same hope as FW for SP-FW

Call for applications !

» With a bilinear objective this algorithm is highly related
to the fictitious play algorithm.

» Rich interplay tapping into this game theory literature.

» Still many theoretical opened questions.
, Karlin’s conjecture.'®

L Convergence without assumption on the bilinearity.

10Samuel Karlin. Mathematical methods and theory in games,
programming and economics. 1960.
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Thank You !

Slides available on www.di.ens.fr/~gidel.



Problems with difficult projection

University game:
1. Game between two universities (A and B).

2. Admitting d students and have to assign pairs of students

into dorms.

3. The game has a payoff matrix M belonging to R(@(d=1)/ 22,

4. M;j . is the expected tuition that B gets (or A gives up) if
A pairs student ¢ with j and B pairs student k with [.
Here the actions are both in the marginal polytope of all
perfect unipartite matchings.

t

Hard to project on this polytope whereas the LMO can be
solved efficiently with the blossom algorithm!!.

117 Edmonds. “Paths, trees and flowers”. In: Canadian Journal of

Mathematics (1965).
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Experiments

10% 7 : : » Sublinear convergence rate
(faster than expected
10° A )
) O(t2))
&0
%’ 10711 4=32640 r
3 d=8128
A d=2016
10721 d=496 s
d=120
d=28
107? T T
10° 10t 102

Iteration

Figure: SP-FW on the University
game.
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L » Best theoretical rate
proved: O(t~1/4)
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Experiments

10% ) : : » Sublinear convergence rate
(faster than expected
10° A F )
) O(t2))
B0
£ 10 (=rasmn - » Best theoretical rate
E d=8128 . —1/d
& P proved: O(t~1/4)

10721 d=496 F . . .
=120 » Scale well with dimension.
d=28

1073 T T

10° 10t 102
Iteration

Figure: SP-FW on the University
game.
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