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Overview

I Frank-Wolfe algorithm (FW) gained in popularity in the
last couple of years.

I Main advantage: FW only needs LMO.

I Extend FW properties to solve saddle point problems1.

I Straightforward extension but Non trivial analysis.

Question for the audience: Call for application

1Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. “Frank-Wolfe
Algorithms for Saddle Point Problems”. In: AISTATS. 2017.
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Saddle point and link with variational inequalities
Let L : X × Y → R, where X and Y are convex and compact.

Saddle point problem: solve min
x∈X

max
y∈Y
L(x,y)

A solution (x∗,y∗) is called a Saddle Point.

I Necessary stationary conditions:

〈x− x∗, ∇xL(x∗,y∗)〉 ≥ 0
〈y − y∗,−∇yL(x∗,y∗)〉 ≥ 0

I Variational inequality:

∀z ∈ X × Y 〈z − z∗, g(z∗)〉 ≥ 0

where (x∗,y∗) = z∗ and g(z) = (∇xL(z),−∇yL(z))
I Sufficient condition: Global solution if L

convex-concave. ∀(x,y) ∈ X × Y

x′ 7→ L(x′,y) is convex and y′ 7→ L(x,y′) is concave.
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Motivations: games and robust learning

I Zero-sum games with two players:
min

x∈∆(I)
max

y∈∆(J)
x>My

I Robust learning:2 We want to learn

min
θ∈Θ

1
n

n∑
i=1

` (fθ(xi), yi) + λΩ(θ)

with an uncertainty regarding the data:

min
θ∈Θ

max
w∈∆n

n∑
i=1

ωi` (fθ(xi), yi) + λΩ(θ)

Minimize the worst case → gives robustness

2J. Wen, C. Yu, and R. Greiner. “Robust Learning under Uncertain
Test Distributions: Relating Covariate Shift to Model Misspecification.”
In: ICML. 2014.
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Problem with Hard projection

The structured SVM:

min
ω∈Rd

λΩ(ω) + 1
n

n∑
i=1

max
y∈Yi

(Li(y)− 〈ω, φi(y)〉)︸ ︷︷ ︸
structured empirical loss

Regularization: penalized → constrained.

min
Ω(ω)≤β

max
α∈∆(|Y|)

bTα− ωTMα

Difficult to project when:
I Structured sparsity norm (group lasso norm).
I The output Y is structured: exponential size.
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Standard approaches in literature
I Projected gradient algorithm.

x(t+1) = PX (x(t) − η∇xL(x(t),y(t)))
y(t+1) = PY(y(t) + η∇yL(x(t),y(t)))

I Projected extra-gradient3.

x̄(t+1) = PX (x(t) − η∇xL(x(t),y(t)))
ȳ(t+1) = PY(y(t) + η∇yL(x(t),y(t)))

Intuition: lookahead move: look at what your opponent
would do before deciding your move.

x(t+1) = PX (x(t) − η∇xL(x̄(t+1), ȳ(t+1)))
y(t+1) = PY(y(t) + η∇yL(x̄(t+1), ȳ(t+1)))

Prevents oscillations for non strongly convex objective.

3GM Korpelevich. “The extragradient method for finding saddle points
and other problems”. In: Matecon (1976).
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Standard approaches in literature

I Gradient method works for non-smooth optimization, but

1
T

T∑
t=1

(
x(t),y(t)

)
−→
T→∞

(x∗,y∗)

I Extragradient method works for smooth optimization,

(x(t),y(t))→ (x∗,y∗)

Even when projections are expensive:

Can use LMO to compute approximate projections4.

4N. He and Z. Harchaoui. “Semi-proximal Mirror-Prox for Nonsmooth
Composite Minimization”. In: NIPS. 2015.
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The FW algorithm

Algorithm Frank-Wolfe algorithm
1: Let x(0) ∈ X
2: for t = 0 . . . T do
3: Compute r(t) = ∇f(x(t))
4: Compute s(t) ∈ argmin

s∈X

〈
s, r(t)〉

5: Compute gt :=
〈
x(t) − s(t), r(t)〉

6: if gt ≤ ε then return x(t)

7: Let γ = 2
2+t (or do line-search)

8: Update x(t+1) := (1−γ)x(t)+γs(t)

9: end for
↵

f(↵)

M

f

Figure: One step of the FW
algorithm
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SP-FW
Algorithm Saddle point FW algorithm

1: for t = 0 . . . T do
2: Compute r(t) :=

(
∇xL(x(t),y(t))
−∇yL(x(t),y(t))

)
3: Compute s(t) ∈ argmin

z∈X×Y

〈
z, r(t)

〉
4: Compute gt :=

〈
z(t) − s(t), r(t)

〉
5: if gt ≤ ε then return z(t)

6: Let γ = min
(
1, νC gt

)
or γ = 2

2+t
7: Update z(t+1) := (1− γ)z(t) + γs(t)

8: end for

I Originally
proposed by
Hammond4

with
γt = 1/(t+ 1).

I One can
define FW
extension with
away step.

I Crucial for
our linear
convergence
results.

I γt = 1
1+t ⇒ z(t) = 1

t

∑t
i=0 s(i).

I (γt = 1
1+t) + Bilinear objective ↔ fictitious play algorithm.5

5J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.
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(
1, νC gt

)
or γ = 2

2+t
7: Update z(t+1) := (1− γ)z(t) + γs(t)

8: end for

I Originally
proposed by
Hammond4

with
γt = 1/(t+ 1).

I One can
define FW
extension with
away step.

I Crucial for
our linear
convergence
results.

I γt = 1
1+t ⇒ z(t) = 1

t

∑t
i=0 s(i).

I (γt = 1
1+t) + Bilinear objective ↔ fictitious play algorithm.5

5J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.
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Advantages of SP-FW
Same main property as FW:

Only LMO (linear minimization oracle).

Same other advantages as FW:
I Convergence certificate gt for free.
I Affine invariance of the algorithm.
I Sparsity of the iterates.
I Universal step size γt := 2

2+t , adaptive step size γt := ν
C gt.

Main difference with FW:
I No line-search.

When constraint set is a “complicated” structured polytope:
projection is difficult whereas LMO is tractable.
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Hypothesis

Similar hypothesis as AFW:
I L is L-smooth and µ-strongly convex-concave.
I X and Y polytopes.

I Additional assumption on bilinearity:

L(x,y) = f(x) + x>My − h(y)

Roughly, ‖M‖ smaller than the strong convexity constant.

ν := 1
2 −

√
2‖M‖
µ

D
δ > 0

D := max{diam(X ), diam(Y)}, δ := min{PWidth(X ), PWidth(Y)}
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Theoretical contribution

SP extension of FW with away step6:

Linear rate with adaptive
step size γt := ν

LD2 gt.

min
s≤t

gs ≤ O(1)
(
1− ν2 δ2

D2
µ

2L

)k(t)

Sublinear rate with uni-
versal step size γt := 2

2+k(t) .

min
s≤t

gs ≤ O
(1
t

)
I k(t) : number of non drop steps, k(t) ≥ t/3 .

I Proof use recent advances on AFW → growth condition.

6Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. “Frank-Wolfe
Algorithms for Saddle Point Problems”. In: AISTATS. 2017.
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Theoretical contribution

SP extension of FW with away step7:

Linear rate with adaptive
step size γt := ν

LD2 gt.

min
s≤t

gs ≤ O(1)
(
1− ν2 δ2

D2
µ

2L

)k(t)

Sublinear rate with uni-
versal step size γt := 2

2+k(t) .

min
s≤t

gs ≤ O
(1
t

)
I k(t) : number of non drop steps, k(t) ≥ t/3 .
I Proof use recent advances on AFW → growth condition.
I Partially answering a 30 years old conjecture8.

• strongly monotone obj with step size 1
t+1 over polytope.

7Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. “Frank-Wolfe
Algorithms for Saddle Point Problems”. In: AISTATS. 2017.

8J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.
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Difficulties for saddle point

Usual descent Lemma:

ht+1 ≤ ht − γtgt︸︷︷︸
≥0

+γ2
t

L‖d(t)‖2

2

With γt small enough the sequence decreases.

For saddle point problem the Lipschitz gradient property gives

Lt+1 − L∗ ≤ Lt − L∗ − γt
(
g

(x)
t − g

(y)
t

)
︸ ︷︷ ︸

arbitrary sign

+γ2
t

L‖d(t)‖2

2 .

I Cannot control the oscillation of the sequence.
I Must introduce other quantities to establish convergence.
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Difficulties for saddle point
Standard merit functions: primal + dual gaps

ht := max
y∈Y
L(x(t),y)−min

x∈X
L(x,y(t)) ≥ 0.

Problem: ŷ(t) := arg maxy∈Y L(x(t),y) depends on t.

wt := L(x(t),y∗)− L∗︸ ︷︷ ︸
:=w(x)

t

+L∗ − L(x∗,y(t))︸ ︷︷ ︸
:=w(y)

t

.

We have,
0 ≤ wt ≤ ht ≤ gt

In general, wt can be zero even if we have not reached a
solution. But for strongly convex-concave function9

ht ≤ Cte
√
wt

9Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. “Frank-Wolfe
Algorithms for Saddle Point Problems”. In: AISTATS. 2017.
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Toy Experiments

I SP-AFW vs. Extragradient with approximate projection.

Theoretical step-size

γt = ν
C gt.

EG : [He & Harchaoui NIPS 2015]

L(x,y) := µ

2 ‖x− x∗‖22 + (x− x∗)>M(y − y∗)− µ

2 ‖y − y∗‖22

•X = Y := [0, 1]d • d = 30 • C := 2LD2 • L = µ
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Conclusion

I SP-FW one of the first SP solver only working with LMO.

I FW resurgence lead to new structured problems.
I Same hope as FW for SP-FW �

Call for applications !

I With a bilinear objective this algorithm is highly related
to the fictitious play algorithm.

I Rich interplay tapping into this game theory literature.
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Conclusion

I SP-FW one of the first SP solver only working with LMO.
I FW resurgence lead to new structured problems.
I Same hope as FW for SP-FW �

Call for applications !

I With a bilinear objective this algorithm is highly related
to the fictitious play algorithm.

I Rich interplay tapping into this game theory literature.
I Still many theoretical opened questions.

�

Karlin’s conjecture.10

�

Convergence without assumption on the bilinearity.

10Samuel Karlin. Mathematical methods and theory in games,
programming and economics. 1960.
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Thank You !

Slides available on www.di.ens.fr/~gidel.



Problems with difficult projection

University game:
1. Game between two universities (A and B).
2. Admitting d students and have to assign pairs of students

into dorms.
3. The game has a payoff matrix M belonging to R(d(d−1)/2)2 .
4. Mij,kl is the expected tuition that B gets (or A gives up) if
A pairs student i with j and B pairs student k with l.

5. Here the actions are both in the marginal polytope of all
perfect unipartite matchings.

Hard to project on this polytope whereas the LMO can be
solved efficiently with the blossom algorithm11.

11J. Edmonds. “Paths, trees and flowers”. In: Canadian Journal of
Mathematics (1965).
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Experiments

Figure: SP-FW on the University
game.

I Sublinear convergence rate
(faster than expected
O(t−2))

I Best theoretical rate
proved: O(t−1/d)

I Scale well with dimension.
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