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Overview

I Machine Learning needs to tackle complicated optimization
problems ⇒ ML needs optimization.

I Frank-Wolfe algorithm (FW) gained in popularity in the
last couple of years.

I It is a convex optimization algorithm solving constrained
problems.

I We tried to extend FW to saddle point optimization which
is non trivial (we partially answered a 30 years old
conjecture).
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Motivations: Games

Zero-sum games with two players:
I Player 1 has actions {1, . . . , I} available.
I Player 2 has actions {1, . . . , J} available.
I If action i and action j, implies a reward Mij for Player 1
I Two players play randomly, x ∈ ∆(|I|),y ∈ ∆(|J |),

E[Mij ] = x>My

Nash equilibrium: (x∗,y∗) ∈ X × Y,

∀(x,y) ∈ X × Y (x∗)>My ≤ (x∗)>My∗ ≤ x>My∗
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Saddle point setting

Let L : X × Y → R, where X and Y are convex and compact.
• Intuition from two players games:

I L is a score function.
I P1 chooses action in X and want to minimize the score.
I P2 chooses action in Y and want to maximize the score.
I The saddle point is the couple of best choice for each player.

• L is said to be convex-concave if:
1. ∀y ∈ Y, x 7→ L(x,y) is convex.
2. ∀x ∈ X , y 7→ L(x,y) is concave.

• A saddle point is a couple (x∗,y∗) such that,
∀(x,y) ∈ X × Y,

L(x∗,y) ≤ L(x∗,y∗) ≤ L(x,y∗)
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Motivations: mores applications

Robust learning:1 We want to learn

min
θ∈Θ

1
n

n∑
i=1

` (fθ(xi), yi) + λΩ(θ) (1)

with an uncertainty regarding the data:

min
θ∈Θ

max
w∈∆n

n∑
i=1

ωi` (fθ(xi), yi) + λΩ(θ) (2)

1Junfeng Wen, Chun-Nam Yu, and Russell Greiner. “Robust Learning
under Uncertain Test Distributions: Relating Covariate Shift to Model
Misspecification.” In: ICML. 2014, pp. 631–639.
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Standard approaches in literature

The standard algorithm to solve Saddle point optimization is
the projected gradient algorithm.

x(t+1) = PX (x(t) − η∇xL(x(t),y(t)))
y(t+1) = PY(y(t) + η∇yL(x(t),y(t)))

When the gradient is uniformly bounded,

1
T

T∑
t=1

(
x(t),y(t)

)
−→
T→∞

(x∗,y∗) (3)
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The FW algorithm

Initialize x(0).
For t = 0, . . . , T do

I Compute:

s(t) := argmin
s∈X

〈
s,∇f(x(t)〉.

I Let γt = 2
2+t .

I Update:

x(t+1) = x(t) + γt(s(t) − x(t))

end
Figure: One step of the FW
algorithm
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SPFW

Then a Saddle point version of Frank Wolfe algorithm is
I Let z(0) = (x(0),y(0)) ∈ X × Y
I For t = 0 . . . T

I Compute G =
(
∇xL(x(t),y(t))
−∇yL(x(t),y(t))

)
I Compute s(t) := argmin

s∈X×Y
〈s, G〉

I Let γt = 2
2+t

I Update z(t+1) := (1− γt)z(t) + γts(t)

I return (x(T ),y(T ))
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Advantages of SP-FW

Why would we use SP-FW ?
I Only a LMO (linear oracle).
I Gap certificate for free.
I Simplicity of implementation.
I Universal step size 2

2+k , adaptive step size gt

2CL
, . . .

I Sparsity of the solution.
I Lots of improvement easily available. Block-coordinate,

Away Step...
When the constraint set is a “complicated” polytope the
projection can be super hard whereas the LMO might be
tractable.
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Problems with Hard projection
The structured SVM:

min
ω
λΩ(ω) + 1

n

n∑
i=1

H̃i(ω)

where H̃i(ω) = maxy∈Yi Li(y)− 〈ω, φi(y)〉 is the structured
hinge loss. Then we can rewrite the problem as

min
Ω(ω)≤R

1
n

n∑
i=1

(
max
yi∈Yi

L>i yi − ω>Miyi
)

but as the function is bilinear

min
Ω(ω)≤β

max
α∈∆(|Y|)

bTα− ωTMα

If Ω(·) is a group lasso norm with overlapping projection is
hard. Projecting on Y is intractable.
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Problems with hard projection

University game:
1. Game between two universities (A and B).
2. Admitting d students and have to assign pairs of students

into dorms.
3. The game has a payoff matrix M belonging to R(d(d−1)/2)2 .
4. Mij,kl is the expected tuition that B gets (or A gives up) if
A pairs student i with j and B pairs student k with l.

5. Here the actions are both in the marginal polytope of all
perfect unipartite matchings.

Hard to project on this polytope whereas the LMO can be
solved efficiently with the blossom algorithm2.

2J. Edmonds. “Paths, trees and flowers”. In: Canadian Journal of
Mathematics (1965).
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Our contributions

Theoretical contributions:
I Introduced a SP extension of FW with away step and

proved its convergence over a polytope under some
conditions (strong convexity of the function big enough).
Partially answering a 30 years old conjecture3.

I With step size γt ∼ gt

ht = O
(
(1− ρ)t/3

)
. (4)

3Janice H Hammond. “Solving asymmetric variational inequality
problems and systems of equations with generalized nonlinear programming
algorithms”. PhD thesis. Massachusetts Institute of Technology, 1984.
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Toy experiments
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Figure: SP-AFW on a toy
example d = 30
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Figure: SP-AFW on a toy
example d = 30 with heuristic
step-size
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Experiments

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

Iteration

D
u

a
lit

y
 g

a
p

 

 

d=28

d=120

d=496

d=2016

d=8128

d=32640

Figure: SP-FW on the University
game.
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Figure: Structural SVM with
OCR dataset (highly regularized).
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Conclusion

I There already exist a lot a saddle point problem in the
machine learning literature and they are most of the time
solved by a trick.

I There exist a few number of algorithm to solve SP
problems directly ! (and they are not well known)

I SP-FW work on SPs and is the only algorithm existing
able to solve some of these problem.
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Thank You !


