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Overview

I Frank-Wolfe algorithm (FW) gained in popularity in the
last couple of years.

I Main advantage: FW only needs LMO.

I Extend FW properties to solve saddle point problem.

I Straightforward extension but Non trivial analysis.
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Saddle point and link with variational inequalities
Let L : X × Y → R, where X and Y are convex and compact.

Saddle point problem: solve min
x∈X

max
y∈Y
L(x,y)

A solution (x∗,y∗) is called a Saddle Point.

I Necessary stationary conditions:

〈x− x∗, ∇xL(x∗,y∗)〉 ≥ 0
〈y − y∗,−∇yL(x∗,y∗)〉 ≥ 0

I Variational inequality:

∀z ∈ X × Y 〈z − z∗, g(z∗)〉 ≥ 0

where (x∗,y∗) = z∗ and g(z) = (∇xL(z),−∇yL(z))
I Sufficient condition: Global solution if L

convex-concave. ∀(x,y) ∈ X × Y

x′ 7→ L(x′,y) is convex and y′ 7→ L(x,y′) is concave.

Gauthier Gidel Frank-Wolfe Algorithms for SP 10th December 2016



Saddle point and link with variational inequalities
Let L : X × Y → R, where X and Y are convex and compact.

Saddle point problem: solve min
x∈X

max
y∈Y
L(x,y)

A solution (x∗,y∗) is called a Saddle Point.
I Necessary stationary conditions:

〈x− x∗, ∇xL(x∗,y∗)〉 ≥ 0

〈y − y∗,−∇yL(x∗,y∗)〉 ≥ 0
I Variational inequality:

∀z ∈ X × Y 〈z − z∗, g(z∗)〉 ≥ 0

where (x∗,y∗) = z∗ and g(z) = (∇xL(z),−∇yL(z))
I Sufficient condition: Global solution if L

convex-concave. ∀(x,y) ∈ X × Y

x′ 7→ L(x′,y) is convex and y′ 7→ L(x,y′) is concave.

Gauthier Gidel Frank-Wolfe Algorithms for SP 10th December 2016



Saddle point and link with variational inequalities
Let L : X × Y → R, where X and Y are convex and compact.

Saddle point problem: solve min
x∈X

max
y∈Y
L(x,y)

A solution (x∗,y∗) is called a Saddle Point.
I Necessary stationary conditions:

〈x− x∗, ∇xL(x∗,y∗)〉 ≥ 0
〈y − y∗,−∇yL(x∗,y∗)〉 ≥ 0

I Variational inequality:

∀z ∈ X × Y 〈z − z∗, g(z∗)〉 ≥ 0

where (x∗,y∗) = z∗ and g(z) = (∇xL(z),−∇yL(z))
I Sufficient condition: Global solution if L

convex-concave. ∀(x,y) ∈ X × Y

x′ 7→ L(x′,y) is convex and y′ 7→ L(x,y′) is concave.

Gauthier Gidel Frank-Wolfe Algorithms for SP 10th December 2016



Saddle point and link with variational inequalities
Let L : X × Y → R, where X and Y are convex and compact.

Saddle point problem: solve min
x∈X

max
y∈Y
L(x,y)

A solution (x∗,y∗) is called a Saddle Point.
I Necessary stationary conditions:

〈x− x∗, ∇xL(x∗,y∗)〉 ≥ 0
〈y − y∗,−∇yL(x∗,y∗)〉 ≥ 0

I Variational inequality:

∀z ∈ X × Y 〈z − z∗, g(z∗)〉 ≥ 0

where (x∗,y∗) = z∗ and g(z) = (∇xL(z),−∇yL(z))

I Sufficient condition: Global solution if L
convex-concave. ∀(x,y) ∈ X × Y

x′ 7→ L(x′,y) is convex and y′ 7→ L(x,y′) is concave.

Gauthier Gidel Frank-Wolfe Algorithms for SP 10th December 2016



Saddle point and link with variational inequalities
Let L : X × Y → R, where X and Y are convex and compact.

Saddle point problem: solve min
x∈X

max
y∈Y
L(x,y)

A solution (x∗,y∗) is called a Saddle Point.
I Necessary stationary conditions:

〈x− x∗, ∇xL(x∗,y∗)〉 ≥ 0
〈y − y∗,−∇yL(x∗,y∗)〉 ≥ 0

I Variational inequality:

∀z ∈ X × Y 〈z − z∗, g(z∗)〉 ≥ 0

where (x∗,y∗) = z∗ and g(z) = (∇xL(z),−∇yL(z))
I Sufficient condition: Global solution if L

convex-concave. ∀(x,y) ∈ X × Y

x′ 7→ L(x′,y) is convex and y′ 7→ L(x,y′) is concave.

Gauthier Gidel Frank-Wolfe Algorithms for SP 10th December 2016



Motivations: games and robust learning
I Zero-sum games with two players:

min
x∈∆(I)

max
y∈∆(J)

x>My

I Generative Adversarial Network (GAN)
I Robust learning:1 We want to learn

min
θ∈Θ

1
n

n∑
i=1

` (fθ(xi), yi) + λΩ(θ)

with an uncertainty regarding the data:

min
θ∈Θ

max
w∈∆n

n∑
i=1

ωi` (fθ(xi), yi) + λΩ(θ)

Minimize the worst case → gives robustness

1J. Wen, C. Yu, and R. Greiner. “Robust Learning under Uncertain
Test Distributions: Relating Covariate Shift to Model Misspecification.”
In: ICML. 2014.
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Problem with Hard projection

The structured SVM:

min
ω∈Rd

λΩ(ω) + 1
n

n∑
i=1

max
y∈Yi

(Li(y)− 〈ω, φi(y)〉)︸ ︷︷ ︸
structured hinge loss

Regularization: penalized → constrained.

min
Ω(ω)≤β

max
α∈∆(|Y|)

bTα− ωTMα

Hard to project when:
I Structured sparsity norm (group lasso norm).
I The output Y is structured: exponential size.
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Standard approaches in literature

Simplest algorithm to solve Saddle point problems is the
projected gradient algorithm.

x(t+1) = PX (x(t) − η∇xL(x(t),y(t)))
y(t+1) = PY(y(t) + η∇yL(x(t),y(t)))

For non-smooth optimization,

1
T

T∑
t=1

(
x(t),y(t)

)
−→
T→∞

(x∗,y∗)

Faster algorithm: projected extra-gradient algorithm.

Can use LMO to compute approximate projections2.

2N. He and Z. Harchaoui. “Semi-proximal Mirror-Prox for Nonsmooth
Composite Minimization”. In: NIPS. 2015.
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The FW algorithm

Algorithm Frank-Wolfe algorithm
1: Let x(0) ∈ X
2: for t = 0 . . . T do
3: Compute r(t) = ∇f(x(t))
4: Compute s(t) ∈ argmin

s∈X

〈
s, r(t)〉

5: Compute gt :=
〈
x(t) − s(t), r(t)〉

6: if gt ≤ ε then return x(t)

7: Let γ = 2
2+t (or do line-search)

8: Update x(t+1) := (1−γ)x(t)+γs(t)

9: end for
↵

f(↵)

M

f

Figure: One step of the FW
algorithm
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SP-FW
Algorithm Saddle point FW algorithm

1: Let z(0) = (x(0),y(0)) ∈ X × Y
2: for t = 0 . . . T do
3: Compute r(t) :=

(
∇xL(x(t),y(t))
−∇yL(x(t),y(t))

)
4: Compute s(t) ∈ argmin

z∈X×Y

〈
z, r(t)

〉
5: Compute gt :=

〈
z(t) − s(t), r(t)

〉
6: if gt ≤ ε then return z(t)

7: Let γ = min
(
1, νC gt

)
or γ = 2

2+t
8: Update z(t+1) := (1− γ)z(t) + γs(t)

9: end for

I One can define FW extension with away step.
I γt = 1

1+t ⇒ z(t) = 1
t

∑t
i=0 s(i).

I (γt = 1
1+t) + Bilinear objective ↔ fictitious play algorithm.
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Advantages of SP-FW
Same main property as FW:

Only LMO (linear minimization oracle).

Same other advantages as FW:
I Convergence certificate gt for free.
I Affine invariance of the algorithm.
I Sparsity of the iterates.
I Universal step size γt := 2

2+t , adaptive step size γt := ν
C gt.

Main difference with SP:
I No line-search.

When constraints set is a “complicated” structured polytope
projections can be hard whereas LMO might be tractable.
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Theoretical contribution
SP extension of FW with away step:

Convergence: Linear rate with adaptive step size.
Sublinear rate with universal step size.

I Similar hypothesis as AFW for linear convergence:
1. Strong convexity and smoothness of the function.
2. X and Y polytopes.

I Additional assumption on the bilinearity.

L(x,y) = f(x) + x>My − g(y)

‖M‖ smaller than the strong convexity constant.
I Proof use recent advances on AFW.
I Partially answering a 30 years old conjecture3.

3J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.

Gauthier Gidel Frank-Wolfe Algorithms for SP 10th December 2016



Theoretical contribution
SP extension of FW with away step:

Convergence: Linear rate with adaptive step size.
Sublinear rate with universal step size.

I Similar hypothesis as AFW for linear convergence:
1. Strong convexity and smoothness of the function.
2. X and Y polytopes.

I Additional assumption on the bilinearity.

L(x,y) = f(x) + x>My − g(y)

‖M‖ smaller than the strong convexity constant.
I Proof use recent advances on AFW.
I Partially answering a 30 years old conjecture3.

3J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.

Gauthier Gidel Frank-Wolfe Algorithms for SP 10th December 2016



Theoretical contribution
SP extension of FW with away step:

Convergence: Linear rate with adaptive step size.
Sublinear rate with universal step size.

I Similar hypothesis as AFW for linear convergence:
1. Strong convexity and smoothness of the function.
2. X and Y polytopes.

I Additional assumption on the bilinearity.

L(x,y) = f(x) + x>My − g(y)

‖M‖ smaller than the strong convexity constant.

I Proof use recent advances on AFW.
I Partially answering a 30 years old conjecture3.

3J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.

Gauthier Gidel Frank-Wolfe Algorithms for SP 10th December 2016



Theoretical contribution
SP extension of FW with away step:

Convergence: Linear rate with adaptive step size.
Sublinear rate with universal step size.

I Similar hypothesis as AFW for linear convergence:
1. Strong convexity and smoothness of the function.
2. X and Y polytopes.

I Additional assumption on the bilinearity.

L(x,y) = f(x) + x>My − g(y)

‖M‖ smaller than the strong convexity constant.
I Proof use recent advances on AFW.
I Partially answering a 30 years old conjecture3.
3J. Hammond. “Solving asymmetric variational inequality problems and

systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.

Gauthier Gidel Frank-Wolfe Algorithms for SP 10th December 2016



Difficulties for saddle point

Usual descent Lemma:

ht+1 ≤ ht − γtgt︸︷︷︸
≥0

+γ2
t

L‖d(t)‖2

2

With γt small enough the sequence decreases.

For saddle point problem the Lipschitz gradient property gives

Lt+1 − L∗ ≤ Lt − L∗ − γt
(
g

(x)
t − g

(y)
t

)
︸ ︷︷ ︸

arbitrary sign

+γ2
t

L‖d(t)‖2

2 .

I Cannot control the oscillation of the sequence.
I Must introduce other quantities to establish convergence.
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Toy experiments

SP-AFW on a toy example
d = 30. with theoretical
step-size γt = ν

C gt.

Figure: SP-AFW on a toy
example d = 30 with heuristic
step-size. γt = gt

C+2 ‖M‖2D2
µ

C = 2LD2
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Conclusion

I SP-FW one of the first SP solver only working with LMO.

I FW resurgence lead to new structured problems.
I Same hope as FW for SP-FW �

Call for applications !

I Still many theoretical opened questions.
I With a bilinear objective this algorithm is highly related

to the fictitious play algorithm.
I Rich interplay tapping into this game theory literature.
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Thank You !

Slides available on www.di.ens.fr/~gidel.


