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Overview

v

Frank-Wolfe algorithm (FW) gained in popularity in the
last couple of years.

v

Main advantage: FW only needs LMO.

v

Extend FW properties to solve saddle point problem.

v

Straightforward extension but Non trivial analysis.
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Saddle point and link with variational inequalities
Let £L: X x Y — R, where X and Y are convex and compact.

Saddle point problem:  solve minmax L(x,y)
reX yey

A solution (z*,y*) is called a Saddle Point.
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Saddle point and link with variational inequalities
Let £L: X xY — R, where X and ) are convex and compact.

Saddle point problem:  solve min max L(x,y)
zcX ye)

A solution (x*,y*) is called a Saddle Point.
» Necessary stationary conditions:

(x—a®, V.L(z",y")) =0
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Saddle point and link with variational inequalities
Let £L: X xY — R, where X and ) are convex and compact.

Saddle point problem:  solve min max L(x,y)
zcX ye)

A solution (x*,y*) is called a Saddle Point.
» Necessary stationary conditions:
(x —x*, V. L(x",y"))

>0
(y—vy", -V, L(z",y")) >0

Gauthier Gidel Frank-Wolfe Algorithms for SP 10th December 2016



Saddle point and link with variational inequalities
Let £L: X xY — R, where X and ) are convex and compact.

Saddle point problem:  solve min max L(x,y)
zcX ye)

A solution (x*,y*) is called a Saddle Point.
» Necessary stationary conditions:
(x —x*, V. L(x",y"))
(y—y", -VyL(z",y"))
» Variational inequality:

>0
>0

Vze X xY (z—2z"¢9(z") >0
where (x*,y*) = z* and ¢(z) = (V.L(2), =V, L(2))
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Saddle point and link with variational inequalities
Let £L: X xY — R, where X and ) are convex and compact.

Saddle point problem:  solve min max L(x,y)
zcX ye)

A solution (x*,y*) is called a Saddle Point.
» Necessary stationary conditions:
(x—x*, V. L(x",y"))>0
(y—y", —VyL(z",y") 2 0
» Variational inequality:

Vze X xY (z—2z%49(z")>0

where (x*,y*) = z* and ¢(z) = (V.L(2), =V, L(2))
» Sufficient condition: Global solution if £
convez-concave. ¥(x,y) € X x Y

' — L(x',y) is convex and vy’ — L(x,y) is concave.
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Motivations: games and robust learning

> Zero-sum games with two players:

min  max :BTMy
zeA(I) yeA(J)

1J. Wen, C. Yu, and R. Greiner. “Robust Learning under Uncertain
Test Distributions: Relating Covariate Shift to Model Misspecification.”
In: ICML. 2014.
Gauthier Gidel | FRaRKCWolte AlgoRtERS FF SP  10th December 2016



Motivations: games and robust learning
» Zero-sum games with two players:

min  max mTMy
zeA(I) yeA(J)

» Generative Adversarial Network (GAN)

1J. Wen, C. Yu, and R. Greiner. “Robust Learning under Uncertain
Test Distributions: Relating Covariate Shift to Model Misspecification.”
In: ICML. 2014.
Gauthier Gidel Frank-Wolfe Algorithms for SP 10th December 2016



Motivations: games and robust learning
» Zero-sum games with two players:

min  max :IzTMy
zeA(I) yeA(J)

» Generative Adversarial Network (GAN)

» Robust learning:' We want to learn

gggﬁzﬁ (fo(m), yi) + AQ(0)

with an uncertainty regarding the data:

Q
rergél max | sz (fo(xi),yi) + AQ2(0)

Minimize the worst case — gives robustness‘

1J. Wen, C. Yu, and R. Greiner. “Robust Learning under Uncertain
Test Distributions: Relating Covariate Shift to Model Misspecification.”
In: ICML. 2014.
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Problem with Hard projection

The structured SVM:

n

, 1
min AQ(w) + - 2 max (Li(y) — (w, ¢i(y)))

structured hinge loss
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Problem with Hard projection

The structured SVM:

n

, 1
min AQ(w) + - 2. 3 (Li(y) — (w, 9i(y)))

structured hinge loss

Regularization: penalized — constrained.

min  max bla—w! Ma
Qw)<B acA(]Y])
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Problem with Hard projection

The structured SVM:

n

min 0 )+71Z 3 X (Li(y) — (w, ¢i(y)))

structured hinge loss

Regularization: penalized — constrained.

min  max bla—w! Ma
Qw)<B acA(]Y])
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Problem with Hard projection

The structured SVM:

n

1
min A0 + 2 max (Li(y) — {w, ¢i(y)))

structured hinge loss

Regularization: penalized — constrained.

min  max bla—w! Ma
Qw)<B acA(]V])
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Problem with Hard projection

The structured SVM:

n

min AQ(w) + 19" ax (Li(y) — {w, ¢i(y)))

weRd ni= yeY:

structured hinge loss

Regularization: penalized — constrained.

min  max bla—w! Ma
Qw)<B acA(JY])

Hard to project when:
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Problem with Hard projection

The structured SVM:

n

1

structured hinge loss

Regularization: penalized — constrained.

min  max bla—w! Ma
Q(w)<B aeA(Y))

Hard to project when:

» Structured sparsity norm (group lasso norm).
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Problem with Hard projection

The structured SVM:

n

1

structured hinge loss

Regularization: penalized — constrained.

min  max bla—w! Ma
Q(w)<B acA(Y))

Hard to project when:
» Structured sparsity norm (group lasso norm).

» The output ) is structured: exponential size.
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Standard approaches in literature

Simplest algorithm to solve Saddle point problems is the
projected gradient algorithm.

) = Py(x) — v, L(x®,yM))
y " = Py(y" + v, L2,y D))

For non-smooth optimization,

T
Z( (t) ) SN ($*7y*)

T
t:l — 00

1

2N. He and Z. Harchaoui. “Semi-proximal Mirror-Prox for Nonsmooth
Composite Minimization”. In: NIPS. 2015.
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Standard approaches in literature

Simplest algorithm to solve Saddle point problems is the
projected gradient algorithm.

) = Py(x) — v, L(x®,yM))
y " = Py(y" + v, L2,y D))

For non-smooth optimization,

T
Z( (t) ) SN ($*7y*)

T
t:l — 00

1

Faster algorithm: projected extra-gradient algorithm.

2N. He and Z. Harchaoui. “Semi-proximal Mirror-Prox for Nonsmooth
Composite Minimization”. In: NIPS. 2015.
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Standard approaches in literature

Simplest algorithm to solve Saddle point problems is the
projected gradient algorithm.

) = Py(x) — v, L(x®,yM))
y " = Py(y" + v, L2,y D))

For non-smooth optimization,

T
Z( (t) ) SN ($*7y*)

T
t:l — 00

1

Faster algorithm: projected extra-gradient algorithm.

Can use LMO to compute approximate projections?.

2N. He and Z. Harchaoui. “Semi-proximal Mirror-Prox for Nonsmooth
Composite Minimization”. In: NIPS. 2015.
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The FW algorithm

Algorithm Frank-Wolfe algorithm

1: Let 2 e X
2: fort=0...T do
3:  Compute r®) = V f(z®)

4:  Compute s¥) € argmin (s,7®))
seX

5. Compute g; := (z®) — s®) r®))
6: if g < e then return z(®

7. Lety= 2L+t (or do line-search)

8:  Update z(*t1) := (1—)ax® +~s®)
9: end for
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The FW algorithm

Algorithm Frank-Wolfe algorithm

1: Let 2 e X
2: fort=0...T do
3:  Compute r®) = V f(z®)

4:  Compute st e argmin <s,r(t)>
seX

5. Compute g; := (z®) — s®) r®))
6: if g < e then return z(®

7. Lety= 2L+t (or do line-search)

8:  Update z(*t1) := (1—)ax® +~s®)
9: end for

Gauthier Gidel " Frank-Wolfe Algorithms for S 10th December 2016



The FW algorithm

Algorithm Frank-Wolfe algorithm

1: Let 2 e X
2: fort=0...T do
3:  Compute r®) = V f(z®)

4:  Compute s¥) € argmin (s,7®))
seX

5. Compute g; := (z®) — s®) r®))
6: if g < e then return z(®

7. Lety= 2L+t (or do line-search)

8:  Update (T := (1—)z(®) 4451
9: end for
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SP-FW

Algorithm Saddle point FW algorithm

1: Let 20 = (20 y0) e x x Y
2: fort=0...7T do

\V4 ’[,(:c(f)ﬂy(f))
. ] e ) .— r ’
3:  Compute r <Vy£(m(t)‘ y“’))

4. Compute s € argmin <z,r(t)>
zeXXY
Compute g; := <z(t) — S(t),r(t)>
if g; < ¢ then return z(®
Let v = min (1, %gt) or vy = Q%-t
Update z(t+1) .= (1— fy)z(t) + s
end for
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SP-FW

Algorithm Saddle point FW algorithm

1: Let 20 = (20 y0) e x x Y
2: fort=0...7T do

3:

4:

Vo L(x®, y®)
t) . Y
Compute 7®) := <_Vy£( (0, (1))

Compute s¥) € argmin <z7r(f)>
zeX XY

Compute g; : <z(t) _ s ,,,(t)>

if g < e then return (1)

Let v = min (1, &g;) or v = %th

Update 2041 := (1 =)z + 41

end for
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SP-FW

Algorithm Saddle point FW algorithm

1: Let 200 = (20 ) c ¥ x Y
2: fort=0...7T do

3:

4:

Vo L(x®, y®)
) . Y
Compute r® := (—Vyﬁ( 0 (t))

Compute s®) € argmin <z,r(t)>
zeXXY

Compute g; : <z(t) _ s ,,,(t)>

if g < e then return (1)

Let v = minr(l, %gt) or v = %th

Update 2D := (1 — 7)z® 4+ ~s®

end for
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SP-FW

Algorithm Saddle point FW algorithm

1: Let 20 = (20 y0) e x x Y
2: fort=0...7T do
Vo L(x®, y®)

. t) .
3. Compute r(t) ;= (—Vyﬁ( (0 (t))>

4:  Compute s € argmin <z,r(t)>
zeX XY
Compute ¢; : <z(t) —s® r(t)>
if g < e then return 2
Let v = min (1, &g;) or v = %th
Update zHD) = (1 — ~)z(®) 4 450
end for

» One can define FW extension with away step.
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SP-FW

Algorithm Saddle point FW algorithm
1: Let 20 = (20 y0) e x x Y

2: fort=0...T do
Vo L(z®, y®) )

, t) ._
3:  Compute r'" : —Vyﬁ(a:(t),y(t))

4:  Compute s € argmin <z,r(t)>
zeX XY

5. Compute g; := <z(t) — s(t),r(t)>

6: if g < e then return 2

7. Let v =min (1, £g) or v = %th

8 Update 2D 1= (1 — 4)2z®) 4 4s®)

9: end for
» One can define FW extension with away step.
> ")It m —N z(t) — 1 t S(Z)

> (v = m) + Blhlledl ()bjt‘Ltl\G < fictitious play algorithm.
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Advantages of SP-FW

Same main property as FW:

Only LMO (linear minimization oracle).
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» Convergence certificate g; for free.
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» Convergence certificate g; for free.
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» Sparsity of the iterates.
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Advantages of SP-FW

Same main property as FW:

‘ Only LMO (linear minimization oracle). ‘

Same other advantages as FW:
» Convergence certificate g; for free.

» Affine invariance of the algorithm.

A\

Sparsity of the iterates.

v

Universal step size v := adaptive step size v 1= &gi.

2
241
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Advantages of SP-FW

Same main property as FW:

‘ Only LMO (linear minimization oracle). ‘

Same other advantages as FW:
» Convergence certificate g; for free.

» Affine invariance of the algorithm.

A\

Sparsity of the iterates.
» Universal step size v :=
Main difference with SP:

» No line-search.

%ﬁ, adaptive step size v 1= &gi.
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Advantages of SP-FW

Same main property as FW:

‘ Only LMO (linear minimization oracle). ‘

Same other advantages as FW:
» Convergence certificate g; for free.

» Affine invariance of the algorithm.

v

Sparsity of the iterates.
» Universal step size v :=
Main difference with SP:

» No line-search.

2 ; . ; —
717 adaptive step size v == &g

When constraints set is a “complicated” structured polytope
projections can be hard whereas LMO might be tractable.
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Theoretical contribution

SP extension of FW with away step:

Linear rate with adaptive step size.

Convergence: . . ] .
g Sublinear rate with universal step size.

3J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.
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Theoretical contribution

SP extension of FW with away step:

Linear rate with adaptive step size.

Convergence: . . ] .
g Sublinear rate with universal step size.

» Similar hypothesis as AFW for linear convergence:

1. Strong convexity and smoothness of the function.
2. X and Y polytopes.

3J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.
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Theoretical contribution

SP extension of FW with away step:

Linear rate with adaptive step size.

Convergence: ) . ] .
g Sublinear rate with universal step size.

» Similar hypothesis as AFW for linear convergence:

1. Strong convexity and smoothness of the function.
2. X and Y polytopes.

» Additional assumption on the bilinearity.

Lz, y) = f(z)+z My —g(y)

| M|| smaller than the strong convexity constant.

3J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.
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Theoretical contribution

SP extension of FW with away step:

Linear rate with adaptive step size.

Convergence: ) . ] .
g Sublinear rate with universal step size.

» Similar hypothesis as AFW for linear convergence:

1. Strong convexity and smoothness of the function.
2. X and Y polytopes.

» Additional assumption on the bilinearity.

L(x,y) = f(x)+z My —g(y)
| M|| smaller than the strong convexity constant.
» Proof use recent advances on AFW.

» Partially answering a 30 years old conjecture?.

3J. Hammond. “Solving asymmetric variational inequality problems and
systems of equations with generalized nonlinear programming algorithms”.
PhD thesis. MIT, 1984.
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Difficulties for saddle point

Usual descent Lemma:

L d(t) 2
hiy1 < b — g0 +7 Ll
NG/ 2

>0

With ~; small enough the sequence decreases.
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Difficulties for saddle point

Usual descent Lemma:

S LId® |12
o < b o
~~ 2

0]

With ~; small enough the sequence decreases.

For saddle point problem the Lipschitz gradient property gives

L||d® |2
Lijy —L< Ly =L = +7; H2”
N —
» Cannot control the of the sequence.

» Must introduce other quantities to establish convergence.
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Toy experiments

Il 1 1 10 -1 1 1 1
. Y Bdapztive ~; heuristic
10711 Y= r 7 heuristic (easier)
v adaptive (easier) > V= ﬁi‘(i)’
1077 "
=3 2
)
3 <}
- -
- | E107 i
g 10 E]
a a
10741 i
1073 T T T 107° T T T
0 1 2 3 4
. 0 0.5 1 1.5 2
Iteration (x10%) Tteration (x10%)

SP-AFW on a toy example Figure: SP-AFW on a toy

d = 30. with theoretical example d = 30 with heuristic
i — g
step-size v = gt step-size. 7 = —— nz\tﬂfD?

C = 2LD?
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d = 30. with theoretical example d = 30 with heuristic
i — g
step-size ¢ = &gt step-size. 7 = —— \\:\Z\LEDE

C = 2LD?
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Conclusion

» SP-FW one of the first SP solver only working with LMO.
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» SP-FW one of the first SP solver only working with LMO.
» F'W resurgence lead to new structured problems.
» Same hope as FW for SP-FW =

Call for applications !
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Conclusion
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FW resurgence lead to new structured problems.
Same hope as FW for SP-FW =

v

v

Call for applications !

v

Still many theoretical opened questions.

Gauthier Gidel Frank-Wolfe Algorithms for SP 10th December 2016



Conclusion

v

SP-FW one of the first SP solver only working with LMO.
FW resurgence lead to new structured problems.
Same hope as FW for SP-FW =

v

v

Call for applications !
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Still many theoretical opened questions.
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With a bilinear objective this algorithm is highly related
to the fictitious play algorithm.
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Conclusion

v

SP-FW one of the first SP solver only working with LMO.
FW resurgence lead to new structured problems.
Same hope as FW for SP-FW =

v

v

Call for applications !

v

Still many theoretical opened questions.

v

With a bilinear objective this algorithm is highly related
to the fictitious play algorithm.

\ 4

Rich interplay tapping into this game theory literature.
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Thank You !

Slides available on www.di.ens.fr/~gidel.



