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Outline

1. Introduction on Saddle point optimization, 
Games and Variational Inequalities.

2. Frank-Wolfe Algorithm for Saddle Point problems.

3. Negative Momentum for improved game dynamics.

4. A Variational inequality perspective on GANs.

5. Future Work.

NB: All the citations in this talk are at the end of the slides.

Slides available on my website: http://gauthiergidel.github.io



Saddle point optimization, 
Games and Variational Inequalities.

Based on [Gidel et al. 2017], [Gidel et al. 2018a] and [Gidel et al. 2018b] 



Game dynamics are weird
fascinating



Start with optimization 
dynamics



Optimization

Smooth, differentiable cost function, L
→ Looking for stationary (fixed) points

(gradient is 0)
→ Gradient descent
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Optimization

Conservative vector field → 

Gradient based dynamics
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Saddle point problems
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Smooth, differentiable cost function,
→ Looking for stationary (fixed) points

(gradients are 0)
→ Gradient descent method.



Non-Conservative vector field → 

Gradient based dynamics:
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Saddle point problems



Minmax training is hard different !



Minmax training is hard different !
(You can replace “minmax” with two-player games)



“Minmax Training is Hard ...”

Example: WGAN [Arjovky et al. 2017]  with linear 
discriminator and generator

Bilinear saddle point = Linear in 𝜃 and 𝜙 
⇒ “Cycling behavior” (see right).

Dynamics:
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Multi-player Games



Two-player Games

Zero-sum game if: also called Saddle Point (SP).

Example: WGAN formulation [Arjovsky et al. 2017]

Player 2Player 1
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Two-player Games

Non zero-sum game if we do not have: 

Player 2Player 1

Example: Non-saturating GAN: [Goodfellow et al. 2014]

Loss of Generator Loss of Discriminator
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Two-player Games
Player 2Player 1

● In games we want to converge to the Saddle Point.

● Different from single objective minimization where 

we want to avoid saddle points.

● Saddle point  -> Zero-sum game (or Minmax)
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Variational Inequality Problem (VIP)



Variational Inequality Problem

Nash-Equilibrium:

Stationary Conditions:

No player can improve its 
cost 

- Based on stationary conditions.
- Relates to vast literature with standard algorithms.

can be constraint 
sets.
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Variational Inequality Problems

Nash-Equilibrium: Stationary Conditions:

Same problem but different perspective.

Joint Minimization vs. Stationary point
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(under convexity  
assumption)



Variational Inequality Problem

Stationary Conditions:

Can be written as:

𝜔* solves the Variational 
Inequality
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Variational Inequality Problem
Stationary Conditions:

Figure from [Dunn 1979]

Unconstrained (or optimum in the interior):
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Variational Inequality Problem
Stationary Conditions:

Figure from [Dunn 1979]

Unconstrained (or ⍵* in the interior): Constrained and ⍵* on the boundary:

Figure from [Dunn 1979]
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Techniques to optimize VIP 
(Batch setting)



Standard Algorithms from Variational Inequality
Method 1: Averaging - Converge even for “cycling behavior”.

- Easy to implement. (out of the training loop)
- Can be combined with any method.

Averaging schemes can be efficiently implemented in an online fashion:
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Standard Algorithms from Variational Inequality
Method 1: Averaging - Converge even for “cycling behavior”.

- Easy to implement. (out of the training loop)
- Can be combined with any method.

General Online averaging: 

Example 1: Uniform averaging  

Example 2: 
Exponential moving 
averaging (EMA)
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Standard Algorithms from Variational Inequality
Method 2: Extragradient

- Step 1:

- Step 2:

Intuition: 

1. Game prespective: Look one step in the future and anticipate next move of adversary.

- Standard in the literature.
- Does not require averaging.
- Theoretically and empirically 

faster.
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Frank-Wolfe Algorithm for Saddle 
Point Problems

Based on an AISTATS paper [Gidel et al. 2017]. 
Joint work with Tony Jebara and Simon Lacoste-Julien



Saddle point problems
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Smooth, differentiable cost function,
→ Compact constraints sets.
→ Looking for stationary (fixed) points
→ Gradient descent method.



Saddle point problems

Gauthier Gidel, 
Predoc III , November 28, 2018

Smooth, differentiable cost function,
→ Compact constraints sets.
→ Looking for stationary (fixed) points
→ Gradient descent method.

Need to project ?



Projection-free Method

Projection may be challenging.

Figure from [Dunn 1979]
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(Extra-)Gradient method:
- Require Projection
- Each projection is a quadratic problem

- Might be too expensive if the constraints set 
is structured.

- May use instead projection-free methods.
- Frank-Wolfe is projection-free.
- It only requires to solve linear problem.

2



Projection-free Method
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(Extra-)Gradient method:
- Require Projection
- Each projection is a quadratic problem

- Might be too expensive if the 
constraints set is structured.

- May use instead projection-free 
methods.

- Frank-Wolfe is projection-free.
- It only requires to solve linear problem.

Example of problem with expensive projection:



Projection-free Method
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Projection-free Method
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Projection-free Method
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Projection-free Method for Saddle Point
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Theoretical Contributions
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[Hammond 1984]



Negative Momentum for Improved 
Game Dynamics

Based on an AISTATS submission [Gidel et al. 2018b]. 
Joint work with Reyhane Askari Hemmat, Mohammad Pezeshki, Rémi Le Priol, Gabriel Huang, Simon 

Lacoste-Julien and Ioannis Mitliagkas



Two-player Games

Nash Equilibrium Smooth, differentiable L
→ Looking for local Nash equil.

→ Gradient method: 
→ Simultaneous
→ Alternating

Gauthier Gidel, 
Predoc III , November 28, 2018



Two-player Games
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Simultaneous 
Updates: 

Alternating 
Updates: 



First contribution: Bilinear game



“Proof by picture”
Gradient descent

→ Simultaneous
→ Alternating

Momentum
→ Positive
→ Negative



Second contribution: Game dynamics
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Game dynamics under gradient descent

Jacobian is non-symmetric, with complex 
eigenvalues → Rotations in decision space 

Momentum can manipulate the 
eigenvalues of the Jacobian.

Can momentum help/hurt??
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Spoiler

Positive momentum can be bad for adversarial games

Practice that was very common when GANs were first 
invented.

→ Recent work reduced the momentum parameter.
→ Not an accident
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Momentum on games

Fixed point operator requires a state augmentation:
(because we need previous iterate) 

Recall Polyak’s momentum (on top of simultaneous grad. desc.):
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A Variational Inequality Perspective 
on GANs

Based on an ICLR submission [Gidel et al. 2018a]. 
Joint work with Hugo Berard, Gaëtan Vignoud, Pascal Vincent, Simon Lacoste-Julien



Quick recap on Generative Adversarial 
Networks (GANs)

(and two-player games)



Generative Adversarial Networks (GANs)

Fake Data

True Data

GeneratorNoise

Discriminator
Fake
or
Real

[Goodfelow et al. NIPS 2014]
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Generative Adversarial Networks (GANs)

Discriminator Generator

If D is non-parametric:

[Goodfelow et al. NIPS 2014]

Non-saturating GAN: “much stronger gradient in early learning”
Loss of Generator Loss of Discriminator
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Two-player Games

Non zero-sum game if we do not have: 

Player 2Player 1

Example: Non-saturating GAN: [Goodfellow et al. 2014]

Loss of Generator Loss of Discriminator
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GANs as a Variational Inequality
Takeaways:

- GAN can be formulated as a Variational Inequality.

- Encompass most of GANs formulations.

- Standard algorithms from Variational Inequality can 
be used for GANs.

- Theoretical Guarantees (for convex and stochastic 
cost functions).
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Standard Algorithms from Variational Inequality
Method 1: Averaging - Converge even for “cycling behavior”.

- Easy to implement. (out of the training loop)
- Can be combined with any method.

General Online averaging: 

Example 1: Uniform averaging  

Example 2: 
Exponential moving 
averaging (EMA)
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Standard Algorithms from Variational Inequality
Method 1: Averaging

Simple Minmax problem: 
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Standard Algorithms from Variational Inequality
Method 1: Averaging

Simple Minmax problem: 
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Standard Algorithms from Variational Inequality
Method 1: Averaging
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Standard Algorithms from Variational Inequality
Method 2: Extragradient

- Step 1:

- Step 2:

Intuition: 

1. Game prespective: Look one step in the future and anticipate next move of adversary.

2. Euler’s method: Extrapolation is close to an implicit method because 

- Standard in the literature.
- Does not require averaging.
- Theoretically and empirically 

faster.
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Standard Algorithms from Variational Inequality
Method 2: Extragradient

Intuition:  Extrapolation is close to an implicit method because 

Unknown:
Require to solve a 
non-linear system 
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Standard Algorithms from Variational Inequality
Method 2: Extragradient Intuition:  Extrapolation is close to an implicit method

*

*

almost the same
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Problem: Extragradient requires to compute two gradients at each step.

Solution: Extrapolation from the past                  Re-use gradient.

- Step 1:                                                           Re-use from previous iteration.

- Step 2:                                                            (same as extragradient).

Extrapolation from the past: Re-using the gradients 
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Extrapolation from the past: Re-using the gradients 

Problem: Extragradient requires to compute two gradients at each step.

Solution: Extrapolation from the past                  Re-use gradient.

- Step 1:                                                           Re-use from previous iteration.

- Step 2:                                                            (same as extragradient).

New Method !!!
Related to [Daskalakis et al., 2018]
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step-size = 0.2 step-size = 0.5



Experimental Results



Experimental Results

Bilinear Stochastic Objective:
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Experimental Results: WGAN (DCGAN) on CIFAR10

Inception Score on CIFAR10

Extragradient Methods

Inception Score vs 
nb of generator updates

Averaging
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Extrapolation
(Adam style) 

Update
(Adam style) 



Experimental Results: WGAN-GP (ResNet) on CIFAR10

Extragradient Methods Averaging

Inception Score vs 
Number of
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Conclusion



- Training of adversarial formulations has been a recurrent issue in modern ML.

- Impact of non-convexity and stochasticity are less understood than in the single 
objective minimization.

- A better understanding of this framework is key to design new optimization algorithms.

- We provided tools to better understand saddle point problem, multi-player games and 
more generally variational inequalities. 

- However, we just scratched the surface . 

Gauthier Gidel, 
Mila Tea Talk, October 26, 2018



Thank you !

Gaëtan VignoudHugo Berard

Pascal Vincent
Simon

Lacoste-Julien Tony Jebara

Reyhane 
Askari Hemmat Gabriel Huang Rémi Le priol

Ioannis 
Mitliagkas

Mohammad 
Pezeshki
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