Frank-Wolfe Algorithms for Saddle Point problems

Tony Jebara²

Simon Lacoste-Julien³

¹INRIA Paris, Sierra Team ²Department of CS, Columbia University

³Department of CS & OR (DIRO) Université de Montréal

 $25\mathrm{th}$ May 2017

Gauthier Gidel

Frank-Wolfe Algorithms for SP

25th May 2017

Overview

- ► Frank-Wolfe algorithm (FW) gained in popularity in the last couple of years.
- ▶ Main advantage: FW only needs LMO.
- ▶ Extend FW properties to solve saddle point problem¹.
- **Straightforward** extension but **Non trivial** analysis.

¹Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. "Frank-Wolfe Algorithms for Saddle Point Problems". In: *AISTATS*. 2017.

Gauthier Gidel

Overview

- ► Frank-Wolfe algorithm (FW) gained in popularity in the last couple of years.
- ▶ Main advantage: FW only needs LMO.
- ▶ Extend FW properties to solve saddle point problem¹.
- **Straightforward** extension but **Non trivial** analysis.

Question for the audience: Call for application

¹Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. "Frank-Wolfe Algorithms for Saddle Point Problems". In: *AISTATS*. 2017.

Saddle point problem:	solve $\min_{oldsymbol{x}\in\mathcal{X}}\max_{oldsymbol{y}\in\mathcal{Y}}\mathcal{L}(oldsymbol{x},oldsymbol{y})$
-----------------------	--

A solution (x^*, y^*) is called a *Saddle Point*.

Saddle point problem: solve
$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \mathcal{L}(x, y)$$

A solution (x^*, y^*) is called a *Saddle Point*.

▶ Necessary *stationary conditions:*

$$\langle \boldsymbol{x} - \boldsymbol{x}^*, \ \nabla_x \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{y}^*) \rangle \geq 0$$

Saddle point problem: solve
$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \mathcal{L}(x, y)$$

A solution (x^*, y^*) is called a *Saddle Point*.

▶ Necessary *stationary conditions:*

$$egin{aligned} & \langle oldsymbol{x} - oldsymbol{x}^*, \
abla_x \mathcal{L}(oldsymbol{x}^*, oldsymbol{y}^*)
angle & \geq 0 \ & \langle oldsymbol{y} - oldsymbol{y}^*, -
abla_y \mathcal{L}(oldsymbol{x}^*, oldsymbol{y}^*)
angle & \geq 0 \end{aligned}$$

$$\text{Saddle point problem:} \quad \text{ solve } \min_{\boldsymbol{x} \in \mathcal{X}} \max_{\boldsymbol{y} \in \mathcal{Y}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{y})$$

A solution (x^*, y^*) is called a **Saddle Point**.

▶ Necessary *stationary conditions:*

$$egin{aligned} & \langle oldsymbol{x} - oldsymbol{x}^*, \
abla_x \mathcal{L}(oldsymbol{x}^*, oldsymbol{y}^*)
angle \geq 0 \ & \langle oldsymbol{y} - oldsymbol{y}^*, -
abla_y \mathcal{L}(oldsymbol{x}^*, oldsymbol{y}^*)
angle \geq 0 \end{aligned}$$

► Variational inequality:

$$\forall \boldsymbol{z} \in \boldsymbol{\mathcal{X}} imes \boldsymbol{\mathcal{Y}} \quad \langle \boldsymbol{z} - \boldsymbol{z}^*, g(\boldsymbol{z}^*) \rangle \geq 0$$

where $(\boldsymbol{x}^*, \boldsymbol{y}^*) = \boldsymbol{z}^*$ and $g(\boldsymbol{z}) = (\nabla_x \mathcal{L}(\boldsymbol{z}), -\nabla_y \mathcal{L}(\boldsymbol{z}))$

$$\text{Saddle point problem:} \quad \text{ solve } \min_{\boldsymbol{x} \in \mathcal{X}} \max_{\boldsymbol{y} \in \mathcal{Y}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{y})$$

A solution (x^*, y^*) is called a **Saddle Point**.

▶ Necessary stationary conditions:

$$egin{aligned} & \langle oldsymbol{x} - oldsymbol{x}^*, \
abla_x \mathcal{L}(oldsymbol{x}^*, oldsymbol{y}^*)
angle \geq 0 \ & \langle oldsymbol{y} - oldsymbol{y}^*, -
abla_y \mathcal{L}(oldsymbol{x}^*, oldsymbol{y}^*)
angle \geq 0 \end{aligned}$$

► Variational inequality:

$$orall oldsymbol{z} \in \mathcal{X} imes \mathcal{Y} \quad ig \langle oldsymbol{z} - oldsymbol{z}^*, g(oldsymbol{z}^*) ig
angle \geq 0$$

where $(\boldsymbol{x}^*, \boldsymbol{y}^*) = \boldsymbol{z}^*$ and $g(\boldsymbol{z}) = (\nabla_x \mathcal{L}(\boldsymbol{z}), -\nabla_y \mathcal{L}(\boldsymbol{z}))$

▶ Sufficient condition: Global solution if \mathcal{L} convex-concave. $\forall (x, y) \in \mathcal{X} \times \mathcal{Y}$

 $oldsymbol{x}'\mapsto \mathcal{L}(oldsymbol{x}',oldsymbol{y}) ext{ is convex } ext{ and } oldsymbol{y}'\mapsto \mathcal{L}(oldsymbol{x},oldsymbol{y}') ext{ is concave}.$

Motivations: games and robust learning

► Zero-sum games with two players:

 $\overline{\min_{\boldsymbol{x} \in \Delta(I)} \max_{\boldsymbol{y} \in \Delta(J)} \boldsymbol{x}^{\top} M \boldsymbol{y}}$

²J. Wen, C. Yu, and R. Greiner. "Robust Learning under Uncertain Test Distributions: Relating Covariate Shift to Model Misspecification." In: *ICML*. 2014.

Motivations: games and robust learning

► Zero-sum games with two players:

 $\min_{\boldsymbol{x} \in \Delta(I)} \max_{\boldsymbol{y} \in \Delta(J)} \boldsymbol{x}^\top M \boldsymbol{y}$

▶ **Robust learning:**² We want to learn

$$\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \ell\left(f_{\theta}(x_i), y_i\right) + \lambda \Omega(\theta)$$

with an uncertainty regarding the data:

$$\min_{\theta \in \Theta} \max_{w \in \Delta_n} \sum_{i=1}^n \omega_i \ell \left(f_{\theta}(x_i), y_i \right) + \lambda \Omega(\theta)$$

Minimize the worst case \rightarrow gives robustness

²J. Wen, C. Yu, and R. Greiner. "Robust Learning under Uncertain Test Distributions: Relating Covariate Shift to Model Misspecification." In: *ICML*. 2014.

The *structured SVM*:

$$\min_{\omega \in \mathbb{R}^d} \lambda \Omega(\omega) + \frac{1}{n} \sum_{i=1}^n \underbrace{\max_{y \in \mathcal{Y}_i} \left(L_i(y) - \langle \omega, \phi_i(y) \rangle \right)}_{\text{structured empirical loss}}$$

The *structured* SVM:

$$\min_{\omega \in \mathbb{R}^d} \lambda \Omega(\omega) + \frac{1}{n} \sum_{i=1}^n \underbrace{\max_{y \in \mathcal{Y}_i} \left(L_i(y) - \langle \omega, \phi_i(y) \rangle \right)}_{\text{structured empirical loss}}$$

Regularization: penalized \rightarrow constrained.

$$\min_{\Omega(\omega) \le \beta} \max_{\alpha \in \Delta(|\mathcal{Y}|)} b^T \alpha - \omega^T M \alpha$$

The structured SVM:

$$\min_{\omega \in \mathbb{R}^d} \lambda \Omega(\omega) + \frac{1}{n} \sum_{i=1}^n \underbrace{\max_{y \in \mathcal{Y}_i} \left(L_i(y) - \langle \omega, \phi_i(y) \rangle \right)}_{\text{structured empirical loss}}$$

Regularization: penalized \rightarrow constrained.

$$\min_{\Omega(\omega) \le \beta} \max_{\alpha \in \Delta(|\mathcal{Y}|)} b^T \alpha - \omega^T M \alpha$$

The *structured* SVM:

$$\min_{\omega \in \mathbb{R}^d} \lambda \Omega(\omega) + \frac{1}{n} \sum_{i=1}^n \underbrace{\max_{y \in \mathcal{Y}_i} (L_i(y) - \langle \omega, \phi_i(y) \rangle)}_{\text{structured empirical loss}}$$

Regularization: penalized \rightarrow constrained.

 $\min_{\Omega(\omega) \le \beta} \max_{\alpha \in \Delta(|\mathcal{Y}|)} b^T \alpha - \omega^T M \alpha$

The structured SVM:

$$\min_{\omega \in \mathbb{R}^d} \lambda \Omega(\omega) + \frac{1}{n} \sum_{i=1}^n \underbrace{\max_{y \in \mathcal{Y}_i} \left(L_i(y) - \langle \omega, \phi_i(y) \rangle \right)}_{\text{structured empirical loss}}$$

Regularization: penalized \rightarrow constrained.

$$\min_{\Omega(\omega) \le \beta} \max_{\alpha \in \Delta(|\mathcal{Y}|)} b^T \alpha - \omega^T M \alpha$$

Difficult to project when:

The structured SVM:

$$\min_{\omega \in \mathbb{R}^d} \lambda \Omega(\omega) + \frac{1}{n} \sum_{i=1}^n \underbrace{\max_{y \in \mathcal{Y}_i} \left(L_i(y) - \langle \omega, \phi_i(y) \rangle \right)}_{\text{structured empirical loss}}$$

Regularization: penalized \rightarrow constrained.

$$\min_{\Omega(\omega) \le \beta} \max_{\alpha \in \Delta(|\mathcal{Y}|)} b^T \alpha - \omega^T M \alpha$$

Difficult to project when:

► *Structured sparsity* norm (group lasso norm).

The structured SVM:

$$\min_{\omega \in \mathbb{R}^d} \lambda \Omega(\omega) + \frac{1}{n} \sum_{i=1}^n \max_{y \in \mathcal{Y}_i} \left(L_i(y) - \langle \omega, \phi_i(y) \rangle \right)$$

Regularization: penalized \rightarrow constrained.

$$\min_{\Omega(\omega) \le \beta} \max_{\alpha \in \Delta(|\mathcal{Y}|)} b^T \alpha - \omega^T M \alpha$$

Difficult to project when:

- ► *Structured sparsity* norm (group lasso norm).
- The output \mathcal{Y} is structured: *exponential* size.

▶ Projected gradient algorithm.

$$\boldsymbol{x}^{(t+1)} = P_{\mathcal{X}}(\boldsymbol{x}^{(t)} - \eta \nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)}))$$
$$\boldsymbol{y}^{(t+1)} = P_{\mathcal{Y}}(\boldsymbol{y}^{(t)} + \eta \nabla_{\boldsymbol{y}} \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)}))$$

 3 GM Korpelevich. "The extragradient method for finding saddle points and other problems". In: *Matecon* (1976).

Gauthier Gidel

▶ Projected gradient algorithm.

$$\begin{aligned} \boldsymbol{x}^{(t+1)} &= P_{\mathcal{X}}(\boldsymbol{x}^{(t)} - \eta \nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)})) \\ \boldsymbol{y}^{(t+1)} &= P_{\mathcal{Y}}(\boldsymbol{y}^{(t)} + \eta \nabla_{\boldsymbol{y}} \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)})) \end{aligned}$$

▶ Projected extra-gradient³.

$$\bar{\boldsymbol{x}}^{(t+1)} = P_{\mathcal{X}}(\boldsymbol{x}^{(t)} - \eta \nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)}))$$
$$\bar{\boldsymbol{y}}^{(t+1)} = P_{\mathcal{Y}}(\boldsymbol{y}^{(t)} + \eta \nabla_{\boldsymbol{y}} \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)}))$$

Intuition: *lookahead* move: look at what your opponent would do before deciding your move.

$$\begin{aligned} \boldsymbol{x}^{(t+1)} &= P_{\mathcal{X}}(\boldsymbol{x}^{(t)} - \eta \nabla_{\boldsymbol{x}} \mathcal{L}(\bar{\boldsymbol{x}}^{(t+1)}, \bar{\boldsymbol{y}}^{(t+1)})) \\ \boldsymbol{y}^{(t+1)} &= P_{\mathcal{Y}}(\boldsymbol{y}^{(t)} + \eta \nabla_{\boldsymbol{y}} \mathcal{L}(\bar{\boldsymbol{x}}^{(t+1)}, \bar{\boldsymbol{y}}^{(t+1)})) \end{aligned}$$

<u>Prevents oscillations for non strongly convex objective.</u> ³GM Korpelevich. "The extragradient method for finding saddle points and other problems". In: *Matecon* (1976).

Gauthier Gidel

▶ Gradient method works for non-smooth optimization, but

$$\frac{1}{T}\sum_{t=1}^{T} \left(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)} \right) \xrightarrow[T \to \infty]{} (\boldsymbol{x}^*, \boldsymbol{y}^*)$$

⁴N. He and Z. Harchaoui. "Semi-proximal Mirror-Prox for Nonsmooth Composite Minimization". In: *NIPS*. 2015.

Gauthier Gidel

▶ Gradient method works for non-smooth optimization, but

$$\frac{1}{T}\sum_{t=1}^{T} \left(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)} \right) \underset{T \to \infty}{\longrightarrow} \left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*} \right)$$

▶ Extragradient method works for smooth optimization,

$$({m x}^{(t)}, {m y}^{(t)}) o ({m x}^*, {m y}^*)$$

 $^4\mathrm{N.}$ He and Z. Harchaoui. "Semi-proximal Mirror-Prox for Nonsmooth Composite Minimization". In: NIPS. 2015.

Gauthier Gidel

▶ Gradient method works for non-smooth optimization, but

$$\frac{1}{T}\sum_{t=1}^{T} \left(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)} \right) \xrightarrow[T \to \infty]{} (\boldsymbol{x}^*, \boldsymbol{y}^*)$$

▶ Extragradient method works for smooth optimization,

$$({m x}^{(t)},{m y}^{(t)}) o ({m x}^*,{m y}^*)$$

Even when projections are expensive:

Can use LMO to compute approximate projections⁴.

⁴N. He and Z. Harchaoui. "Semi-proximal Mirror-Prox for Nonsmooth Composite Minimization". In: *NIPS*. 2015.

Algorithm Frank-Wolfe algorithm

1: Let
$$\boldsymbol{x}^{(0)} \in \mathcal{X}$$

2: for $t = 0 \dots T$ do

3: Compute
$$\mathbf{r}^{(t)} \in \nabla f(\mathbf{x}^{(t)})$$

4: Compute $\mathbf{s}^{(t)} \in \operatorname{argmin} / \mathbf{s}$

4: Compute
$$s^{(t)} \in \underset{s \in \mathcal{X}}{\operatorname{argmin}} \langle s, r^{(t)} \rangle$$

(+)

5: Compute
$$g_t := \langle \boldsymbol{x}^{(t)} - \boldsymbol{s}^{(t)}, \boldsymbol{r}^{(t)} \rangle$$

6: **if**
$$g_t \leq \epsilon$$
 then return $x^{(t)}$

7: Let
$$\gamma = \frac{2}{2+t}$$
 (or do line-search)

8: Update
$$\boldsymbol{x}^{(t+1)} := (1-\gamma)\boldsymbol{x}^{(t)} + \gamma \boldsymbol{s}^{(t)}$$

9: end for

Algorithm Frank-Wolfe algorithm

- 1: Let $\boldsymbol{x}^{(0)} \in \mathcal{X}$
- 2: for t = 0 ... T do
- 3: Compute $\boldsymbol{r}^{(t)} = \nabla f(\boldsymbol{x}^{(t)})$
- 4: Compute $s^{(t)} \in \underset{s \in \mathcal{X}}{\operatorname{argmin}} \langle s, r^{(t)} \rangle$
- 5: Compute $g_t := \left\langle \boldsymbol{x}^{(t)} \boldsymbol{s}^{(t)}, \boldsymbol{r}^{(t)} \right\rangle$
- 6: **if** $g_t \leq \epsilon$ **then return** $x^{(t)}$

7: Let
$$\gamma = \frac{2}{2+t}$$
 (or do line-search)

8: Update $\boldsymbol{x}^{(t+1)} := (1-\gamma)\boldsymbol{x}^{(t)} + \gamma \boldsymbol{s}^{(t)}$ 9: end for

Algorithm Frank-Wolfe algorithm

1: Let
$$\boldsymbol{x}^{(0)} \in \mathcal{X}$$

2: for
$$t = 0 ... T$$
 do

3: Compute
$$\boldsymbol{r}^{(t)} = \nabla f(\boldsymbol{x}^{(t)})$$

4: Compute $s^{(t)} \in \underset{s \in \mathcal{X}}{\operatorname{argmin}} \langle s, r^{(t)} \rangle$

5: Compute
$$g_t := \langle \boldsymbol{x}^{(t)} - \boldsymbol{s}^{(t)}, \boldsymbol{r}^{(t)} \rangle$$

6: **if** $g_t \leq \epsilon$ **then return** $\boldsymbol{x}^{(t)}$

7: Let
$$\gamma = \frac{2}{2+t}$$
 (or do line-search)

8: Update
$$\boldsymbol{x}^{(t+1)} := (1-\gamma)\boldsymbol{x}^{(t)} + \gamma \boldsymbol{s}^{(t)}$$

9: end for

Algorithm Frank-Wolfe algorithm

1: Let
$$\boldsymbol{x}^{(0)} \in \mathcal{X}$$

2: for $t = 0 \dots T$ do
3: Compute $\boldsymbol{r}^{(t)} = \nabla f(\boldsymbol{x}^{(t)})$

4: Compute
$$s^{(t)} \in \underset{s \in \mathcal{X}}{\operatorname{argmin}} \langle s, r^{(t)} \rangle$$

5: Compute
$$g_t := \langle \boldsymbol{x}^{(t)} - \boldsymbol{s}^{(t)}, \boldsymbol{r}^{(t)} \rangle$$

6: **if**
$$g_t \leq \epsilon$$
 then return $x^{(t)}$

7: Let
$$\gamma = \frac{2}{2+t}$$
 (or do line-search)

8: Update
$$\boldsymbol{x}^{(t+1)} := (1-\gamma)\boldsymbol{x}^{(t)} + \gamma \boldsymbol{s}^{(t)}$$

9: end for

Algorithm Saddle point FW algorithm

- 1: for t = 0 ... T do
- 2: Compute $\boldsymbol{r}^{(t)} := \begin{pmatrix} \nabla_x \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)}) \\ -\nabla_y \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)}) \end{pmatrix}$
- 3: Compute $s^{(t)} \in \underset{z \in \mathcal{X} \times \mathcal{Y}}{\operatorname{argmin}} \left\langle z, r^{(t)} \right\rangle$

4: Compute
$$g_t := \left\langle \boldsymbol{z}^{(t)} - \boldsymbol{s}^{(t)}, \boldsymbol{r}^{(t)} \right\rangle$$

5: **if** $g_t \leq \epsilon$ **then return** $\boldsymbol{z}^{(t)}$

6: Let
$$\gamma = \min\left(1, \frac{\nu}{C}g_t\right)$$
 or $\gamma = \frac{2}{2+t}$

7: Update
$$\boldsymbol{z}^{(t+1)} := (1-\gamma)\boldsymbol{z}^{(t)} + \gamma \boldsymbol{s}^{(t)}$$

8: end for

25th May 2017

 Originally proposed by Hammond⁴ with

$$\gamma_t = 1/(t+1).$$

 $^{^5 \}rm J.$ Hammond. "Solving asymmetric variational inequality problems and systems of equations with generalized nonlinear programming algorithms". PhD thesis. MIT, 1984.

Algorithm Saddle point FW algorithm

1: for t = 0 ... T do 2: Compute $\boldsymbol{r}^{(t)} := \begin{pmatrix} \nabla_x \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)}) \\ -\nabla_y \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)}) \end{pmatrix}$ Compute $\boldsymbol{s}^{(t)} \in \operatorname*{argmin}_{\boldsymbol{z} \in \mathcal{X} \times \mathcal{V}} \left\langle \boldsymbol{z}, \boldsymbol{r}^{(t)} \right\rangle$ 3: Compute $g_t := \left\langle oldsymbol{z}^{(t)} - oldsymbol{s}^{(t)}, oldsymbol{r}^{(t)}
ight
angle$ 4: if $g_t \leq \epsilon$ then return $\boldsymbol{z}^{(t)}$ 5:Let $\gamma = \min\left(1, \frac{\nu}{C}g_t\right)$ or $\gamma = \frac{2}{2+t}$ 6:Update $\boldsymbol{z}^{(t+1)} := (1 - \gamma)\boldsymbol{z}^{(t)} + \gamma \boldsymbol{s}^{(t)}$ 7: 8: end for

 Originally proposed by Hammond⁴ with

$$\gamma_t = 1/(t+1).$$

 $^{^5 \}rm J.$ Hammond. "Solving asymmetric variational inequality problems and systems of equations with generalized nonlinear programming algorithms". PhD thesis. MIT, 1984.

Algorithm Saddle point FW algorithm

- 1: for t = 0 ... T do 2: Compute $\boldsymbol{r}^{(t)} := \begin{pmatrix} \nabla_x \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)}) \\ -\nabla_y \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)}) \end{pmatrix}$ Compute $\boldsymbol{s}^{(t)} \in \operatorname*{argmin}_{\boldsymbol{z} \in \mathcal{X} imes \mathcal{Y}} \left\langle \boldsymbol{z}, \boldsymbol{r}^{(t)} \right\rangle$ 3: $\text{Compute } g_t := \left\langle \boldsymbol{z}^{(t)} - \boldsymbol{s}^{(t)}, \boldsymbol{r}^{(t)} \right\rangle$ 4: if $g_t \leq \epsilon$ then return $\boldsymbol{z}^{(t)}$ 5:Let $\gamma = \min\left(1, \frac{\nu}{C}g_t\right)$ or $\gamma = \frac{2}{2+t}$ 6:Update $\boldsymbol{z}^{(t+1)} := (1-\gamma)\boldsymbol{z}^{(t)} + \gamma \boldsymbol{s}^{(t)}$ 7: 8: end for
- Originally proposed by Hammond⁴ with

$$\gamma_t = 1/(t+1).$$

 $^{^5 \}rm J.$ Hammond. "Solving asymmetric variational inequality problems and systems of equations with generalized nonlinear programming algorithms". PhD thesis. MIT, 1984.

Algorithm Saddle point FW algorithm

1: for t = 0 ... T do 2: Compute $\boldsymbol{r}^{(t)} := \left(egin{array}{c}
abla_x \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)}) \\
-
abla_y \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)}) \\
\end{array}
ight)$ Compute $\boldsymbol{s}^{(t)} \in \operatorname*{argmin}_{\boldsymbol{z} \in \mathcal{X} imes \mathcal{Y}} \left\langle \boldsymbol{z}, \boldsymbol{r}^{(t)} \right\rangle$ 3: Compute $g_t := \left\langle oldsymbol{z}^{(t)} - oldsymbol{s}^{(t)}, oldsymbol{r}^{(t)}
ight
angle$ 4: if $g_t \leq \epsilon$ then return $\boldsymbol{z}^{(t)}$ 5:Let $\gamma = \min\left(1, \frac{\nu}{C}g_t\right)$ or $\gamma = \frac{2}{2+t}$ 6:Update $\boldsymbol{z}^{(t+1)} := (1 - \gamma)\boldsymbol{z}^{(t)} + \gamma \boldsymbol{s}^{(t)}$ 7: 8: end for

 Originally proposed by Hammond⁴ with

$$\gamma_t = 1/(t+1).$$

 $^{^5 \}rm J.$ Hammond. "Solving asymmetric variational inequality problems and systems of equations with generalized nonlinear programming algorithms". PhD thesis. MIT, 1984.

Algorithm Saddle point FW algorithm

1: for t = 0 ... T do 2: Compute $\boldsymbol{r}^{(t)} := \begin{pmatrix} \nabla_x \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)}) \\ -\nabla_y \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)}) \end{pmatrix}$ $\boxed{\text{Compute } \boldsymbol{s}^{(t)} \in \operatornamewithlimits{argmin}_{\boldsymbol{z} \in \mathcal{X} \times \mathcal{Y}} \left\langle \boldsymbol{z}, \boldsymbol{r}^{(t)} \right\rangle}$ 3: $\text{Compute } g_t := \left\langle \boldsymbol{z}^{(t)} - \boldsymbol{s}^{(t)}, \boldsymbol{r}^{(t)} \right\rangle$ 4: if $g_t \leq \epsilon$ then return $\boldsymbol{z}^{(t)}$ Let $\gamma = \min\left(1, \frac{\nu}{C}g_t\right)$ or $\gamma = \frac{2}{2+t}$ 6:Update $\boldsymbol{z}^{(t+1)} := (1 - \gamma)\boldsymbol{z}^{(t)} + \gamma \boldsymbol{s}^{(t)}$ 7: 8: end for

 Originally proposed by Hammond⁴ with

$$\gamma_t = 1/(t+1).$$

 $^{^5 \}rm J.$ Hammond. "Solving asymmetric variational inequality problems and systems of equations with generalized nonlinear programming algorithms". PhD thesis. MIT, 1984.

Algorithm Saddle point FW algorithm

1: for
$$t = 0 \dots T$$
 do
2: Compute $\mathbf{r}^{(t)} := \begin{pmatrix} \nabla_x \mathcal{L}(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}) \\ -\nabla_y \mathcal{L}(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}) \end{pmatrix}$
3: Compute $\mathbf{s}^{(t)} \in \underset{\mathbf{z} \in \mathcal{X} \times \mathcal{Y}}{\operatorname{argmin}} \langle \mathbf{z}, \mathbf{r}^{(t)} \rangle$
4: Compute $g_t := \langle \mathbf{z}^{(t)} - \mathbf{s}^{(t)}, \mathbf{r}^{(t)} \rangle$
5: if $g_t \leq \epsilon$ then return $\mathbf{z}^{(t)}$
6: Let $\gamma = \min(1, \frac{\nu}{C}g_t)$ or $\gamma = \frac{2}{2+t}$
7: Update $\mathbf{z}^{(t+1)} := (1 - \gamma)\mathbf{z}^{(t)} + \gamma \mathbf{s}^{(t)}$
8: end for

- Originally proposed by Hammond⁴ with $\gamma_t = 1/(t+1)$.
- One can define FW extension with away step.

 $^{^5 \}rm J.$ Hammond. "Solving asymmetric variational inequality problems and systems of equations with generalized nonlinear programming algorithms". PhD thesis. MIT, 1984.

Algorithm Saddle point FW algorithm

1: for
$$t = 0 \dots T$$
 do
2: Compute $\mathbf{r}^{(t)} := \begin{pmatrix} \nabla_x \mathcal{L}(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}) \\ -\nabla_y \mathcal{L}(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}) \end{pmatrix}$
3: Compute $\mathbf{s}^{(t)} \in \operatorname*{argmin}_{\mathbf{z} \in \mathcal{X} \times \mathcal{Y}} \langle \mathbf{z}, \mathbf{r}^{(t)} \rangle$
4: Compute $g_t := \langle \mathbf{z}^{(t)} - \mathbf{s}^{(t)}, \mathbf{r}^{(t)} \rangle$
5: if $g_t \leq \epsilon$ then return $\mathbf{z}^{(t)}$
6: Let $\gamma = \min(1, \frac{\nu}{C}g_t)$ or $\gamma = \frac{2}{2+t}$
7: Update $\mathbf{z}^{(t+1)} := (1 - \gamma)\mathbf{z}^{(t)} + \gamma \mathbf{s}^{(t)}$
8: end for

• Originally proposed by Hammond⁴ with $\gamma_t = 1/(t+1)$.

- One can define FW extension with away step.
- Crucial for our linear convergence results.

⁵J. Hammond. "Solving asymmetric variational inequality problems and systems of equations with generalized nonlinear programming algorithms". PhD thesis. MIT, 1984.

Algorithm Saddle point FW algorithm

1: for
$$t = 0...T$$
 do
2: Compute $\mathbf{r}^{(t)} := \begin{pmatrix} \nabla_x \mathcal{L}(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}) \\ -\nabla_y \mathcal{L}(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}) \end{pmatrix}$
3: Compute $\mathbf{s}^{(t)} \in \underset{\mathbf{z} \in \mathcal{X} \times \mathcal{Y}}{\operatorname{argmin}} \langle \mathbf{z}, \mathbf{r}^{(t)} \rangle$
4: Compute $g_t := \langle \mathbf{z}^{(t)} - \mathbf{s}^{(t)}, \mathbf{r}^{(t)} \rangle$
5: if $g_t \leq \epsilon$ then return $\mathbf{z}^{(t)}$
6: Let $\gamma = \min(1, \frac{\nu}{C}g_t)$ or $\gamma = \frac{2}{2+t}$
7: Update $\mathbf{z}^{(t+1)} := (1-\gamma)\mathbf{z}^{(t)} + \gamma \mathbf{s}^{(t)}$
8: end for

Forginally
proposed by
Hammond⁴
with
$$\gamma_t = 1/(t+1)$$
.

- One can define FW extension with away step.
- Crucial for our linear convergence results.

$$\blacktriangleright \ \gamma_t = \frac{1}{1+t} \Rightarrow \boldsymbol{z}^{(t)} = \frac{1}{t} \sum_{i=0}^t \boldsymbol{s}^{(i)}.$$

⁵J. Hammond. "Solving asymmetric variational inequality problems and systems of equations with generalized nonlinear programming algorithms". PhD thesis. MIT, 1984.

Algorithm Saddle point FW algorithm

1: for
$$t = 0 \dots T$$
 do
2: Compute $\mathbf{r}^{(t)} := \begin{pmatrix} \nabla_x \mathcal{L}(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}) \\ -\nabla_y \mathcal{L}(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}) \end{pmatrix}$
3: Compute $\mathbf{s}^{(t)} \in \operatorname*{argmin}_{\mathbf{z} \in \mathcal{X} \times \mathcal{Y}} \langle \mathbf{z}, \mathbf{r}^{(t)} \rangle$
4: Compute $g_t := \langle \mathbf{z}^{(t)} - \mathbf{s}^{(t)}, \mathbf{r}^{(t)} \rangle$
5: if $g_t \leq \epsilon$ then return $\mathbf{z}^{(t)}$
6: Let $\gamma = \min(1, \frac{\nu}{C}g_t)$ or $\gamma = \frac{2}{2+t}$
7: Update $\mathbf{z}^{(t+1)} := (1 - \gamma)\mathbf{z}^{(t)} + \gamma \mathbf{s}^{(t)}$
8: end for

- Originally proposed by Hammond⁴ with $\gamma_t = 1/(t+1)$.
- One can define FW extension with away step.
- Crucial for our linear convergence results.

 $\gamma_t = \frac{1}{1+t} \Rightarrow z^{(t)} = \frac{1}{t} \sum_{i=0}^t s^{(i)}.$ $(\gamma_t = \frac{1}{1+t}) + \text{Bilinear objective} \leftrightarrow fictitious play algorithm.⁵$

⁵J. Hammond. "Solving asymmetric variational inequality problems and systems of equations with generalized nonlinear programming algorithms". PhD thesis. MIT, 1984.

Advantages of SP-FW

Same main property as FW:

Only LMO (linear minimization oracle).

Same main property as FW:

Only LMO (linear minimization oracle).

Same other **advantages** as FW:

• Convergence certificate g_t for free.

Same main property as FW:

Only LMO (linear minimization oracle).

Same other **advantages** as FW:

- Convergence certificate g_t for free.
- ▶ Affine invariance of the algorithm.

Same main property as FW:

Only LMO (linear minimization oracle).

Same other **advantages** as FW:

- Convergence certificate g_t for free.
- ▶ Affine invariance of the algorithm.
- ► *Sparsity* of the iterates.

Same main property as FW:

Only LMO (linear minimization oracle).

Same other **advantages** as FW:

- Convergence certificate g_t for free.
- Affine invariance of the algorithm.
- ► *Sparsity* of the iterates.
- ▶ Universal step size $\gamma_t := \frac{2}{2+t}$, adaptive step size $\gamma_t := \frac{\nu}{C}g_t$.

Same main property as FW:

Only LMO (linear minimization oracle).

Same other **advantages** as FW:

- Convergence certificate g_t for free.
- ▶ Affine invariance of the algorithm.
- ► *Sparsity* of the iterates.

► Universal step size $\gamma_t := \frac{2}{2+t}$, adaptive step size $\gamma_t := \frac{\nu}{C}g_t$. Main **difference** with FW:

▶ No line-search.

Same main property as FW:

Only LMO (linear minimization oracle).

Same other **advantages** as FW:

- Convergence certificate g_t for free.
- ▶ Affine invariance of the algorithm.
- ► *Sparsity* of the iterates.

► Universal step size $\gamma_t := \frac{2}{2+t}$, adaptive step size $\gamma_t := \frac{\nu}{C}g_t$. Main **difference** with FW:

▶ No line-search.

When constraint set is a "complicated" *structured* polytope: projection is *difficult* whereas LMO is *tractable*.

Hypothesis

Similar hypothesis as AFW:

- \mathcal{L} is *L*-smooth and μ -strongly convex-concave.
- \mathcal{X} and \mathcal{Y} polytopes.

Hypothesis

Similar hypothesis as AFW:

- \mathcal{L} is *L*-smooth and μ -strongly convex-concave.
- \mathcal{X} and \mathcal{Y} polytopes.
- ► Additional assumption on **bilinearity**:

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{y}) = f(\boldsymbol{x}) + \boldsymbol{x}^{\top} M \boldsymbol{y} - h(\boldsymbol{y})$$

Roughly, ||M|| smaller than the strong convexity constant.

$$\nu := \frac{1}{2} - \frac{\sqrt{2} \|M\|}{\mu} \frac{D}{\delta} > 0$$

 $D := \max\{\operatorname{diam}(\mathcal{X}), \operatorname{diam}(\mathcal{Y})\}, \, \delta := \min\{PWidth(\mathcal{X}), PWidth(\mathcal{Y})\}\}$

Theoretical contribution

SP extension of FW with $away \ step^6$:

Linear rate with *adaptive* step size $\gamma_t := \frac{\nu}{LD^2} g_t$. Sublinear rate with universal step size $\gamma_t := \frac{2}{2+k(t)}$.

 $\min_{s \le t} g_s \le O(1) \left(1 - \nu^2 \frac{\delta^2}{D^2} \frac{\mu}{2L} \right)^{k(t)} \qquad \min_{s \le t} g_s \le O\left(\frac{1}{t}\right)$ $k(t) : \text{ number of non drop steps, } \overline{k(t) \ge t/3}.$

Gauthier Gidel

Frank-Wolfe Algorithms for SP

⁶Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. "Frank-Wolfe Algorithms for Saddle Point Problems". In: *AISTATS*. 2017.

Theoretical contribution

SP extension of FW with $away \ step^6$:

Linear rate with *adaptive* step size $\gamma_t := \frac{\nu}{LD^2}g_t$. Sublinear rate with universal step size $\gamma_t := \frac{2}{2+k(t)}$.

 $\lim_{s \le t} g_s \le O(1) \left(1 - \nu^2 \frac{\delta^2}{D^2} \frac{\mu}{2L} \right)^{k(t)} \qquad \qquad \min_{s \le t} g_s \le O\left(\frac{1}{t}\right)$

► k(t) : number of non drop steps, $k(t) \ge t/3$.

▶ Proof use recent advances on $AFW \rightarrow \mathbf{growth}\ \mathbf{condition}$.

⁶Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. "Frank-Wolfe Algorithms for Saddle Point Problems". In: *AISTATS*. 2017.

Gauthier Gidel

Frank-Wolfe Algorithms for SP

Theoretical contribution

SP extension of FW with $away \ step^7$:

Linear rate with *adaptive* step size $\gamma_t := \frac{\nu}{LD^2}g_t$. Sublinear rate with universal step size $\gamma_t := \frac{2}{2+k(t)}$.

$$\min_{s \le t} g_s \le O(1) \left(1 - \nu^2 \frac{\delta^2}{D^2} \frac{\mu}{2L} \right)^{k(t)} \qquad \min_{s \le t} g_s \le O\left(\frac{1}{t}\right)$$

► k(t) : number of non drop steps, $|k(t) \ge t/3|$.

- ▶ Proof use recent advances on $AFW \rightarrow \mathbf{growth}$ condition.
- ▶ Partially answering a **30 years old conjecture**⁸.
 - strongly monotone obj with step size $\frac{1}{t+1}$ over polytope.

⁷Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. "Frank-Wolfe Algorithms for Saddle Point Problems". In: *AISTATS*. 2017.

⁸J. Hammond. "Solving asymmetric variational inequality problems and systems of equations with generalized nonlinear programming algorithms". PhD thesis. MIT, 1984.

Growth Condition : Pairwise Frank Wolfe Gap

•
$$s_t := \underset{s \in \mathcal{X}}{\operatorname{arg\,min}} \langle \nabla f(\boldsymbol{x}^{(t)}), \boldsymbol{s} \rangle.$$

$$\blacktriangleright \ \boldsymbol{v}_t := \operatorname*{arg\,max}_{\boldsymbol{v} \in \mathcal{S}^{(t)}} \langle \nabla f(\boldsymbol{x}^{(t)}), \boldsymbol{s} \rangle$$

$$g_t^{ ext{PW}} := \left\langle
abla f(oldsymbol{x}^{(t)}), oldsymbol{v}_t - oldsymbol{s}_t
ight
angle$$

Growth Condition

Key quantity, **independent** of any algorithm⁹:

• If \mathcal{X} is a polytope and f strongly convex,

$$f(\boldsymbol{x}^{(t)}) - f^* \le \frac{(g_t^{\text{PW}})^2}{2\mu_{\text{FW}}}$$

⁹Simon Lacoste-Julien and Martin Jaggi. "On the global linear convergence of Frank-Wolfe optimization variants". In: *NIPS*. 2015.

Gauthier Gidel

Frank-Wolfe Algorithms for SP

Growth Condition

Key quantity, **independent** of any algorithm⁹:

• If \mathcal{X} is a polytope and f strongly convex,

$$f(\boldsymbol{x}^{(t)}) - f^* \le \frac{(g_t^{\mathrm{PW}})^2}{2\mu_{\mathrm{FW}}}$$

▶ In the unconstrained case, analog of:

$$f(x^{(t)}) - f^* \le rac{\|
abla f(x^{(t)})\|^2}{2\mu}$$

⁹Simon Lacoste-Julien and Martin Jaggi. "On the global linear convergence of Frank-Wolfe optimization variants". In: *NIPS*. 2015.

Gauthier Gidel

Frank-Wolfe Algorithms for SP

Growth Condition

Key quantity, **independent** of any algorithm⁹:

• If \mathcal{X} is a polytope and f strongly convex,

$$f(\boldsymbol{x}^{(t)}) - f^* \le \frac{(g_t^{\mathrm{PW}})^2}{2\mu_{\mathrm{FW}}}$$

▶ In the unconstrained case, analog of:

$$f(x^{(t)}) - f^* \le \frac{\|
abla f(x^{(t)})\|^2}{2\mu}$$

▶ Can extend this growth condition to SP.

 $^9 \rm Simon$ Lacoste-Julien and Martin Jaggi. "On the global linear convergence of Frank-Wolfe optimization variants". In: NIPS. 2015.

Gauthier Gidel

Frank-Wolfe Algorithms for SP

Usual descent Lemma:

$$h_{t+1} \le h_t - \underbrace{\gamma_t g_t}_{\ge 0} + \gamma_t^2 \frac{L \| \boldsymbol{d}^{(t)} \|^2}{2}$$

With γ_t small enough the sequence decreases.

Usual descent Lemma:

$$h_{t+1} \le h_t - \underbrace{\gamma_t g_t}_{\ge 0} + \gamma_t^2 \frac{L \| \boldsymbol{d}^{(t)} \|^2}{2}$$

With γ_t small enough the sequence decreases.

For saddle point problem the Lipschitz gradient property gives

$$\mathcal{L}_{t+1} - \mathcal{L}^* \leq \mathcal{L}_t - \mathcal{L}^* - \underbrace{\gamma_t \left(g_t^{(x)} - g_t^{(y)}\right)}_{\text{arbitrary sign}} + \gamma_t^2 \frac{L \|\boldsymbol{d}^{(t)}\|^2}{2}.$$

- ► Cannot control the oscillation of the sequence.
- ▶ Must introduce other quantities to establish convergence.

Standard merit functions: primal + dual gaps

$$h_t := \max_{\boldsymbol{y} \in \mathcal{Y}} \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}) - \min_{\boldsymbol{x} \in \mathcal{X}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{y}^{(t)}) \ge 0.$$

¹⁰Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. "Frank-Wolfe Algorithms for Saddle Point Problems". In: *AISTATS*. 2017.

Gauthier Gidel

Frank-Wolfe Algorithms for SP

 $25\mathrm{th}$ May 2017

Standard merit functions: primal + dual gaps

$$h_t := \max_{\boldsymbol{y} \in \mathcal{Y}} \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}) - \min_{\boldsymbol{x} \in \mathcal{X}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{y}^{(t)}) \ge 0.$$

Problem: $\hat{\boldsymbol{y}}^{(t)} := \arg \max_{\boldsymbol{y} \in \mathcal{Y}} \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y})$ depends on t.

¹⁰Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. "Frank-Wolfe Algorithms for Saddle Point Problems". In: *AISTATS*. 2017.

Gauthier Gidel

Frank-Wolfe Algorithms for SP

Standard merit functions: primal + dual gaps

$$h_t := \max_{\boldsymbol{y} \in \mathcal{Y}} \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}) - \min_{\boldsymbol{x} \in \mathcal{X}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{y}^{(t)}) \ge 0.$$

Problem: $\hat{\boldsymbol{y}}^{(t)} := \arg \max_{\boldsymbol{y} \in \mathcal{Y}} \mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y})$ depends on t.

$$w_t := \underbrace{\mathcal{L}(\boldsymbol{x}^{(t)}, \boldsymbol{y}^*) - \mathcal{L}^*}_{:= w_t^{(x)}} + \underbrace{\mathcal{L}^* - \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{y}^{(t)})}_{:= w_t^{(y)}}.$$

We have,

$$0 \le w_t \le h_t \le g_t$$

In general, w_t can be zero even if we have not reached a solution. But for strongly convex-concave function¹⁰

$$h_t \leq Cte\sqrt{w_t}$$

¹⁰Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. "Frank-Wolfe Algorithms for Saddle Point Problems". In: *AISTATS*. 2017.

Gauthier Gidel

▶ SP-AFW with theoretical step-size.

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{y}) := \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{x}^*\|_2^2 + (\boldsymbol{x} - \boldsymbol{x}^*)^\top M(\boldsymbol{y} - \boldsymbol{y}^*) - \frac{\mu}{2} \|\boldsymbol{y} - \boldsymbol{y}^*\|_2^2$$

• $\mathcal{X} = \mathcal{Y} := [0, 1]^d$ • $d = 30$ • $C := 2LD^2$ • $L = \mu$

Gauthier Gidel

▶ SP-AFW vs. Extragradient with approximate projection.

Theoretical step-size

$$\gamma_t = \frac{\nu}{C} g_t.$$

EG : [He & Harchaoui NIPS 2015]

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{y}) := \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{x}^*\|_2^2 + (\boldsymbol{x} - \boldsymbol{x}^*)^\top M(\boldsymbol{y} - \boldsymbol{y}^*) - \frac{\mu}{2} \|\boldsymbol{y} - \boldsymbol{y}^*\|_2^2$$

• $\mathcal{X} = \mathcal{Y} := [0, 1]^d$ • $d = 30$ • $C := 2LD^2$ • $L = \mu$

Gauthier Gidel

▶ SP-AFW with heuristic step-size. (When $\nu < 0$)

Heuristic step-size.

$$\gamma_t = \frac{g_t}{C + 2\frac{\|M\|^2 D^2}{\mu}}$$

Recall: theoretical step-size

$$\gamma_t = \frac{\nu}{C} g_t.$$

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{y}) := \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{x}^*\|_2^2 + (\boldsymbol{x} - \boldsymbol{x}^*)^\top M(\boldsymbol{y} - \boldsymbol{y}^*) - \frac{\mu}{2} \|\boldsymbol{y} - \boldsymbol{y}^*\|_2^2$$

• $\mathcal{X} = \mathcal{Y} := [0, 1]^d$ • $d = 30$ • $C := 2LD^2$ • $L = \mu$

Gauthier Gidel

▶ SP-AFW with heuristic step-size. (When $\nu < 0$)

Heuristic step-size.

$$\gamma_t = \frac{g_t}{C + 2\frac{\|M\|^2 D^2}{\mu}}$$

Recall: theoretical step-size

$$\gamma_t = \frac{\nu}{C} g_t.$$

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{y}) := \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{x}^*\|_2^2 + (\boldsymbol{x} - \boldsymbol{x}^*)^\top M(\boldsymbol{y} - \boldsymbol{y}^*) - \frac{\mu}{2} \|\boldsymbol{y} - \boldsymbol{y}^*\|_2^2$$

• $\mathcal{X} = \mathcal{Y} := [0, 1]^d$ • $d = 30$ • $C := 2LD^2$ • $L = \mu$

Gauthier Gidel

▶ SP-AFW with heuristic step-size. (When $\nu < 0$)

Heuristic step-size.

$$\gamma_t = \frac{g_t}{C + 2\frac{\|M\|^2 D^2}{\mu}}$$

Recall: theoretical step-size

$$\gamma_t = \frac{\nu}{C}g_t.$$

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{y}) := \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{x}^*\|_2^2 + (\boldsymbol{x} - \boldsymbol{x}^*)^\top M(\boldsymbol{y} - \boldsymbol{y}^*) - \frac{\mu}{2} \|\boldsymbol{y} - \boldsymbol{y}^*\|_2^2$$

• $\mathcal{X} = \mathcal{Y} := [0, 1]^d$ • $d = 30$ • $C := 2LD^2$ • $L = \mu$

Gauthier Gidel

▶ SP-FW one of the first SP solver only working with LMO.

- ▶ SP-FW one of the first SP solver only working with LMO.
- \blacktriangleright FW resurgence lead to new *structured* problems.

- ▶ SP-FW one of the first SP solver only working with LMO.
- ▶ FW resurgence lead to new *structured* problems.
- ▶ Same hope as FW for SP-FW

- ▶ SP-FW one of the first SP solver only working with LMO.
- ▶ FW resurgence lead to new *structured* problems.
- ▶ Same hope as FW for SP-FW \neg

Call for applications !

- ▶ SP-FW one of the first SP solver only working with LMO.
- ▶ FW resurgence lead to new *structured* problems.
- ▶ Same hope as FW for SP-FW \neg

Call for applications !

With a bilinear objective this algorithm is *highly related* to the *fictitious play algorithm*.

- ▶ SP-FW one of the first SP solver only working with LMO.
- ▶ FW resurgence lead to new *structured* problems.
- ▶ Same hope as FW for SP-FW \neg

Call for applications !

- With a bilinear objective this algorithm is *highly related* to the *fictitious play algorithm*.
- ▶ Rich interplay tapping into this game theory literature.

- ▶ SP-FW one of the first SP solver only working with LMO.
- ▶ FW resurgence lead to new *structured* problems.
- ▶ Same hope as FW for SP-FW \neg

Call for applications !

- With a bilinear objective this algorithm is *highly related* to the *fictitious play algorithm*.
- ▶ Rich interplay tapping into this game theory literature.
- ▶ Still many theoretical opened questions.
 - ↓ Karlin's conjecture.¹¹
 - 4 Convergence without assumption on the bilinearity.

¹¹Samuel Karlin. Mathematical methods and theory in games, programming and economics. 1960.

Thank You !

Slides available on www.di.ens.fr/~gidel.

Problems with difficult projection

University game:

- 1. Game between two universities (A and B).
- 2. Admitting d students and have to assign pairs of students into dorms.
- 3. The game has a payoff matrix M belonging to $\mathbb{R}^{(d(d-1)/2)^2}$.
- 4. $M_{ij,kl}$ is the expected tuition that B gets (or A gives up) if A pairs student i with j and B pairs student k with l.
- 5. Here the actions are both in the *marginal polytope* of all perfect *unipartite matchings*.

Hard to project on this polytope whereas the LMO can be solved efficiently with the blossom algorithm 12 .

 $^{^{12}}$ J. Edmonds. "Paths, trees and flowers". In: Canadian Journal of Mathematics (1965).

Experiments

• Sublinear convergence rate (faster than expected $O(t^{-2})$)

Figure: SP-FW on the University game.

Experiments

- Sublinear convergence rate (faster than expected $O(t^{-2})$)
- Best theoretical rate proved: $O(t^{-1/d})$

Figure: SP-FW on the University game.

Experiments

Figure: SP-FW on the University game.

- Sublinear convergence rate (faster than expected $O(t^{-2})$)
- Best theoretical rate proved: $O(t^{-1/d})$
- ▶ Scale well with dimension.