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We live in a world full of games
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Multi-player:

Notion of performance depends 
on the opponent(s)

Single player:

Notion of performance fully 
specified by the environment 
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Games specifically designed for Machine 
learning purposes

Picture: [Wu et al. 2020]

For Generative modeling:

Generative Adversarial Networks
[Goodfellow et al. 2014]

Fake Data

True Data

GeneratorNoise

Discriminator
Fake
or
Real
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Games are a great tool to learn complex notions
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Games are a great tool to learn complex notions

Multi-player games are notoriously challenging 
to train. [Goodfellow, 2016, Nowozin et al., 2016; Arjovsky et al., 2017].

The learning target is harder to define. 
6



Gauthier Gidel,
Mila and DIRO, April 7th, 2020   

Problem 1: is there a ‘best’ strategy? 
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Problem 1 : is there a ‘best’ strategy? 
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There is no best single strategy.

But there is a best distribution

Mixed equilibrium 
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[Vinyals et al. 2019]
(Picture from DeepMind’s Blog post)

Starcraft II

Mixed Strategies are necessary to play games!!! 

Problem: too many pure strategies to naively consider 
distributions over strategies (mixed-strategies).

In RL: Pure strategy == deterministic policy
            Mixed strategy == stochastic policy 10
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Mixed Strategies are necessary to play games!!! 

Problem: we have a limited capacity: (we cannot represent some pure or 
mixed-strategy)         It changes the (best) way to play the game.

Limited capacity (constraints no imposed by the rules): 
- Physical limitation for the number of action per minute. 
- Neural networks cannot represent any function. 11

Picture from [Vinyals 
et al. 2019]
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Outline

1. Latent games: how to leverage function approximation to play games.

2. Game Optimization: what are the potential difficulties arising.

3. The landscape of games:  an empirical study of practical landscapes. 

4. Future Work: Design of new adversarial formulation for ML.
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Minimax Theorems for Latent games: 
or how I learned to stop worrying about mixed-Nash and love neural nets

Gauthier Gidel, David Balduzzi, Wojciech Czarnecki, Marta Garnelo and Yoram Bachrach,
arXiv 2020

Work under review done during an internship at DeepMind London

14



Gauthier Gidel,
Mila and DIRO, April 7th, 2020   

Lay of the land

Many recent successes to solve what the ML community call (two-player) games:

[Vinyals et al. 2019]
(Picture from DeepMind’s Blog post)

Starcraft IIPoker

[Brown and Sandholm 2018]
(Picture from FAIR’s Blog post)

[Wu et al. 2020]

Generative Adversarial Nets

15

Using neural networks
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● Game theory: “one must consider mixed strategy”.

● Previous game theoretic papers on GANs consider the networks as 
pure-strategies: [Arora et al., 2017; Oliehoek et al., 2018; Grnarova et al., 2018;  Hsieh et al., 2019] 

Lay of the land

16

Mixture of networks == distribution over weights (not practical) 
In practice: correspond to finite collection of models (very costly)

Theoretical focus (what is our goal)
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Lay of the land

17

Mixture of networks == distribution over weights (not practical) 
In practice: correspond to finite collection of models (very costly)

Theoretical focus (what is our goal)

Practitioners always used a single 

pair (not a collection) of networks to 

achieve state-of-the-art (SOTA) results 

[Brock et al., 2019, Wu et al., 2020]
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Bridging the gap between theory and practice

Our contributions: 
1. Unify “real world games” (Poker, Starcraft) 

and machine learning games (GANs)

18

Previous work: 
1. No theoretical work except on GANs. 

[Arora et al., 2017; Oliehoek et al., 2018; 
Grnarova et al., 2018;  Hsieh et al., 2019]

Theoretical focus: can we achieve an equilibrium with a single pair of agents???
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Bridging the gap between theory and practice

Our contributions: 
1. Unify “real world games” (Poker, Starcraft) 

and machine learning games (GANs)

2. Propose a way to see networks directly as 
mixed-strategies. 

3. Definition of game/equilibrium that take 
into account the practical considerations 
(finite capacity and single pair of network):

4. Proof that one can reach and approximate 
equilibrium with a single pair of networks.
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Previous work: 
1. No theoretical work except on GANs. 

[Arora et al., 2017; Oliehoek et al., 2018; 
Grnarova et al., 2018;  Hsieh et al., 2019]

2. Theoretical work on GANs considered 
networks as pure strategies.

3. Advocating in practice for a 
collection of weights. (very costly)

4. Unable to explain why a single pair of 
networks achieve SOTA.

Theoretical focus: can we achieve an equilibrium with a single pair of agents???
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Structure of the section:

1. Definition of a game (need for mixed strategies)

2. GAN example: represent mixed-strategies with function 
(neural networks)

3. Generalization to any game!

4. Using these function we can define a new concept of 
equilibrium (limited to the representable mixed-strategies)
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A (zero-sum) game, what is this? 

Set of strategies for 
the first player

Set of strategies for 
the second player

payoff/reward for 
the first player

23
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How to reach an equilibrium ?

Solution: play strategies randomly

Probability 
distributions 
over strategies

Average 
payoff

24
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How to reach an equilibrium ?

Any probability 
distributions 
over strategies

Average 
payoff

Fundamental result of game theory 
[von Neumann, 1928]: 

By playing mixed-strategy one can achieve an 
equilibrium.

 

25

Not limited 
capacity !!!
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Example: Rock-Paper-Scissors

In that particular example:

- antisymmetric cost

- Winning == 1

- Losing == -1 

- Tying == 0 

- Zero-sum games are 

more general

26
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First contribution: (Naive) GANs

(fake) Image

Generator

Discriminator

Function

Dataset

27
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First contribution: Payoff of (Naive) GANs

How well the dataset is classified as “real”

Convention: 0 is “fake” and 1 is “real”

How well the fake image is 
classified as “fake”

... 28
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First contribution: Payoff of (Naive) GANs

How well the dataset is classified as “real”

Going from pure-strategy to mixed-strategies: 

How well the fake image is 
classified as “fake”

... 29
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Payoff of (Naive) GANs

How well the dataset is classified as “real” How well the fake image is 
classified as “fake”

... 30

Fact: The Generator correspond to a mixed strategy.  
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Idea: use function approximation to 
construct mixtures of strategie

Latent space strategy space

31

We can use functions to represents a 
distribution (i.e. a mixed strategy)!!!
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Idea: use function approximation to 
construct mixtures of strategie

Latent space

32

We can use functions to represents a 
distribution (i.e. a mixed strategy)!!!

Normal or uniform 
distribution

strategy space
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Standard game theory:

- Consider distributions over A and B.

(mixed strategies)

33

Latent games theory:

- Consider distributions encoded by limited 

capacity functions. 

Set of strategies for 
the first player

Set of strategies for 
the second player

payoff/reward for 
the first player
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Standard game theory:

- Consider distributions over A and B.

(mixed strategies)

- When A infinite (or large), distribution 

space over A infinite dimensional!!!

34

Latent games theory:

- Consider distributions encoded by limited 

capacity functions. 

- Tractable even when A infinite.

Set of strategies for 
the first player

Set of strategies for 
the second player

payoff/reward for 
the first player
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Standard game theory:

- Consider distributions over A and B.

(mixed strategies)

- When A infinite (or large), distribution 

space over A infinite dimensional!!!

- Not practical 35

Latent games theory:

- Consider distributions encoded by limited 

capacity functions. 

- Tractable even when A infinite.

- Correspond to practical GANs

- Extend to any games.

Set of strategies for 
the first player

Set of strategies for 
the second player

payoff/reward for 
the first player
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36

Question: Can we extend von Neumann’s 
Theorem to Latent games?

Answer: Yes! 

And it provides the notion of a limited capacity 
equilibrium.
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In a latent game, the agents 
leverage function approximation 
to play mixed strategies  

- Related to the RL policies used to play StarCraft II [Vinyals et al. 2019]

- Related to GANs generators [Goodfellow et al. 2014]. 

- General and flexible framework that aim to explain why neural nets achieve 

to approximate equilibria in complex games. 

37
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Theorem (informal): we can define a notion of 
limited-capacity equilibrium for a latent game that 
depends on the capacity of the functions of each agents. 

- Each agent updates their function for a given architecture.

- Limited capacity to play the game.

- Differs from the Nash of the game (unlimited capacity equilibrium)

38
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Theorem (informal): We can achieve a pure 
approximate limited-capacity equilibrium using 
wide enough networks. 

Achieving Pure-Nash with Neural Nets

Takeaway: This result bridges the gap between theory and practice.

39
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Outline

1. Latent games: how to leverage function approximation to play games.

2. Game Optimization: what are the potential difficulties arising.

3. The landscape of games:  an empirical study of practical landscapes. 

4. Future Work: Design of new adversarial formulation for ML.
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A Variational Inequality Perspective 
on GANs

Gauthier Gidel*, Hugo Berard*, Gaëtan Vignoud, Pascal Vincent, Simon Lacoste-Julien
*equal contribution work presented at ICLR 2019

41
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Game training is hard fascinating !

42
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Rediscovery of the failure of gradient method 
in games [Goodfellow, 2016]

Example: WGAN with linear discriminator 
and generator [Mescederer et al., 2018]

Bilinear saddle point = Linear in 𝜃 and 𝜙 
⇒ “Cycling behavior” (see right).

Minimax Training is hard fascinating

Our contribution: analysis of gradient, 
averaging and extragradient for bilinear 
saddle points.
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and generator [Mescederer et al., 2018]
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Generative Adversarial Networks as a 
Variational Inequality Problem (VIP)

45
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Best strategy for first player (min) is: 

GANs as a Variational Inequality

Nash-Equilibrium:

Stationary Conditions:

New perspective for GANs:
- Based on the vector field of the game and its stationary conditions.
- Relates to vast literature with standard algorithms.

Best strategy for second player (max) is: 

Gradient of the first 
player at the Nash

Gradient of the second 
player at the Nash 46
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Main takeaways from this perspective: 

- The losses do not matter.

- What matter is the vector field followed for the training:

- This vector field may exhibit rotations.

- Need for specific techniques to handle rotations.
47



Gauthier Gidel,
Mila and DIRO, April 7th, 2020   

General Online averaging: 

Example 1: Uniform averaging  

Example 2: 
Exponential moving 
averaging (EMA)

Method 1: Averaging - Converge even for “cycling behavior”.
- Easy to implement. (out of the training loop)
- Can be combined with any method.

Standard Algorithms from Variational Inequality

48
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Method 2: Extragradient

- Step 1:

- Step 2:

Standard Algorithms from Variational Inequality

Intuition: 

1. Game perspective: Look one step in the future and anticipate next move of adversary.

2. Euler’s method: Extrapolation is close to an implicit method because 

- Standard in the literature.
- Does not require averaging.
- Theoretically and empirically 

faster.

49
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Standard Algorithms from Variational Inequality

Method 2: Extragradient

New Intuition:  Extrapolation is close to an implicit method because 

Unknown:
Require to solve a 
non-linear system 

50
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Problem: Extragradient requires to compute two gradients at each step.

Solution: Extrapolation from the past                  Re-use gradient.

- Step 1:                                                           Re-use from previous iteration.

- Step 2:                                                            (same as extragradient).

Extrapolation from the past: Re-using the gradients 

51
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Extrapolation from the past: Re-using the gradients 

Problem: Extragradient requires to compute two gradients at each step.

Solution: Extrapolation from the past                  Re-use gradient.

- Step 1:                                                           Re-use from previous iteration.

- Step 2:                                                            (same as extragradient).

New method with 
convergence 
guarantees!!!

Related to [Daskalakis et al., 2018]
52
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step-size = 0.2
step-size = 0.5

53
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Extrapolation
(Adam style) 

Update
(Adam style) 

54
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Experimental Results: WGAN-GP (ResNet) on CIFAR10

Extragradient Methods Averaging

Inception Score vs 
Number of updates
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Recall takeaways from VIP perspective: 

- What matter is the vector field followed for the training.

- This vector field may exhibit rotations.
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Recall takeaways from VIP perspective: 

- What matter is the vector field followed for the training.

- This vector field may exhibit rotations.

Is it really the 
case in practice ?

57



Gauthier Gidel,
Mila and DIRO, April 7th, 2020   

Outline

1. Latent games: how to leverage function approximation to play games.

2. Game Optimization: what are the potential difficulties arising.

3. The landscape of games:  an empirical study of practical landscapes. 

4. Future Work: Design of new adversarial formulation for ML.
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A closer look at the landscapes of 
GANs

Gauthier Gidel*, Hugo Berard*, Amjad Almairi, Pascal Vincent, Simon Lacoste-Julien
Work Accepted at ICLR 2020 done during an internship at ElementAI
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Recall takeaways from VIP perspective: 

- What matter is the vector field followed for the training.

- This vector field may exhibit rotations.

Is it really the 
case in practice ?

[Mescheder et al., 2018] 
[Balduzzi et al., 2018]
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Path-Angle: A new visualization 
tool to detect rotations.

1. Linear path between initialization and last 
iterate.

2. Compute the norm of the game 
vector field.

3. Compute cosine similarity between 
linear path and game vector field.

Initialization

Last iterate
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Path-Angle Plots: 3 archetypal behaviors.

Orange: The norm of 
the game vector field. 

Blue: The cosine 
similarity.

Sign Switch: Indicates 
attractive behavior.

Bump: Indicates 
rotational behavior. 

Mix between bump and 
sign switch: Indicates 
rotational + attractive 

behavior. 

Norm of the gradient 
is close to zero = 
Equilibrium point
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Path-Angle Plots: 3 archetypal behaviors.

Orange: The norm of 
the game vector field. 

Blue: The cosine 
similarity.

Sign Switch: Indicates 
attractive behavior.

Bump: Indicates 
rotational behavior. 

Mix between bump and 
sign switch: Indicates 
rotational + attractive 

behavior. 

Norm of the gradient 
is close to zero = 
Equilibrium point
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Large bump indicates the 
presence of rotations.
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Path Forward 

Generalization

Coordination

non-convex games

Adversarial examples 

Communication
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Building new adversarial formulations for a 
learning purpose

Design new adversarial 
formulation for pure machine 
learning purpose.

Explore cooperative or 
coordination concepts to 
design new learning 
objectives.  

69



Impact of using a 
“league” of agents 

- Evaluation

- Training

- Definition of diversity 

[Vinyals et al. 2019] 70



Study of non-monotone vector fields 

Figure from [Gidel et al. 2019]
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Need for more 
assumptions



Acknowledgements 
(and many others) !!!
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Thank you!!!
Any question ?
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Achieving super-human performance in Chess has 
been long standing challenge

  

Deep Blue (1996) Deeper Blue (1997) [Campbell et al. 2002][Shannon 1950]

Programming 
a computer for 
playing chess.

[Samuel 1959]

Some studies in machine 
learning using the game 
of checkers

Research paper 
on Deep Blue

Photo: EPA

Matthew Pritchett 74
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Beyond Chess, achieving super-human performance in multi-player games 
are great challenges

[Vinyals et al. 2019]
(Picture from DeepMind’s Blog post)

Starcraft IIPoker

[Brown and Sandholm 2019]
(Picture from FAIR’s Blog post)

[Silver et al. 2016] 
(Picture from DeepMind’s blog post)

Go

[OpenAI et al. 2019]
(Picture from OpenAI’s Blog post)

Dota 2
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Games specifically designed for Machine 
learning purposes

Picture: [Wu et al. 2020]

For Generative modeling:

Generative Adversarial Networks
[Goodfellow et al. 2014]

For learning classifier robust to 
adversarial attacks

Adversarial Training
[Madry et al. 2017]

Picture: [Goodfellow et al. 2014]
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Problem: is there a ‘best’ action? 

beatsbeats
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Problem: is there a ‘best’ strategy? 

beats

beats
beats
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Problem: is there a ‘best’ strategy? 

beats

beats
beats

beatsbeats

b
eats
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Problem: is there a ‘best’ strategy? 
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There is no best action.

But there is a best team 

Mixed equilibrium 
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Problem: is there a ‘best’ action? 

beats

beats
beats
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b
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There is no best action.

But there is a best team Part 1 of the talk: 

How to find the best team using function approximation
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Starcraft II is more challenging to train and evaluate than Go: 

[Silver et al. 2016] 
(Picture from DeepMind’s blog post)

Go

pictures from pokebip.com

beatsbeatsSuperhuman 
performance
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[Vinyals et al. 2019]
(Picture from DeepMind’s Blog post)

Starcraft II

Starcraft II is more challenging to train and evaluate than Go: 

UnSolved

[Silver et al. 2016] 
(Picture from DeepMind’s blog post)

Go

pictures from pokebip.com

beats

beats
beats

beatsbeatsSuperhuman 
performance

beats beats+
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Problem 1: is there a ‘best’ action? 
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Problem 1: is there a ‘best’ action? 

The best agent plays the 
‘best’ actions in a 

“unpredictable” way.

His behavior cannot be 
exploited   
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Problem 1: is there a ‘best’ action? 

The best agent is 
unpredictable and play 

the ‘best’ actions.

His behavior cannot be 
exploited   

Part 1 of the talk: 

Minimax Theorems for Latent games.

87



Gauthier Gidel,
Mila and DIRO, April 7th, 2020   

Problem 2: Can we train a reasonably  ‘good’ agent? 
(and if yes, how???)

Minimax objective:
Gradient method

Standard minimization:
Gradient descent
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Problem 2: Can we train a reasonably  ‘good’ agent? 
(and if yes, how???)

Minimax objective:
Gradient method

Standard minimization:
Gradient descent

Part 2 and 3 of the talk: 
Optimization of games
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Example: Rock-Paper-Scissors

Solution to be unpredictable: play actions randomly

Probability 
distributions 
over actions

Average 
payoff

Fundamental result of game theory [von Neumann, 1928]: there exists

1) a number V, called the value of the game, 
2) a strategy for each player such that their average gain is at least V (resp. -V) no matter 

what the other does. “As far as I can see, there could be 
no theory of games [without] the 
Minimax Theorem”

     von Neumann (1953)
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Battlefield 2
(Black wins)

Colonel Blotto Game:

Battlefield 1
(Black wins)

Battlefield 3
(White wins)

Strategy: One 
allocation

We want agent to 
play mixture of 
strategy, i.e, 
distribution on 
allocations

+ +

+ +

=  8

=  8

Game:
(Black wins)
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Colonel Blotto Game:

...Battlefield 1
(P2 wins)

Battlefield K
(P1 wins)

Simplified version:
Same number of 
soldier to allocate.

A strategy is a point 
in the simplex of 
dimension K.

A mixed strategy is a distribution 
over the simplex 92
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Continuous Colonel Blotto Game:

...Battlefield 1 Battlefield K

p1 pK

q1 qK

=  1

=  1+       ...          +

+       ...          +

Payoff = 1{p1 > q1} + … + 1{pK > qK}
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Differentiable Colonel Blotto Game:

...Battlefield 1 Battlefield K

p1 pK

q1 qK

=  1

=  1+       ...          +

+       ...          +

Payoff = 𝞼(p1 - q1) + … + 𝞼(pK - qK)

Agents: Latent functions.

94



Gauthier Gidel,
Mila and DIRO, April 7th, 2020   

Example: Rock-Paper-Scissors

Solution to be unpredictable: play actions randomly

Probability 
distributions 
over strategies

Average 
payoff

Fundamental result of game theory [von Neumann, 1928]: there exists

1) a number V, called the value of the game, 
2) a strategy for each player such that their average gain is at least V (resp. -V) no 

matter what the other does. 

A Goal of the 
game: find 
this strategy
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Proof of 
concept:
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(Very) Quick reminder on Generative 
Adversarial Networks (GANs)
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Generative Adversarial Networks (GANs)

Discriminator Generator

If D is non-parametric:

[Goodfellow et al. NIPS 2014]

               : Probability of being real.
Disciminator: maximize log-likelihood

Example1: Minimax GAN [Goodfellow et al. 2014]
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Generative Adversarial Networks (GANs)

Discriminator Generator

If D is non-parametric:

[Goodfellow et al. NIPS 2014]

               : Probability of being real.
Disciminator: maximize log-likelihood

Example2: WGAN formulation [Arjovsky et al. 2017]

Example1: Minimax GAN [Goodfellow et al. 2014]
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Building new adversarial formulations for a 
learning purpose

Picture: [Goodfellow et al. 2014]

Example: make adversarial training a latent 
game

[Madry et al. 2017]

Explore cooperative or 
coordination concepts to 
design new learning 
objectives.  
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Compute Coarse Correlated equilibria for 
‘coordination games’

Learning to coordinate by 
sharing the latent variable.
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