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We live in a world full of games
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Single player: Multi-player:

Notion of performance fully Notion of performance depends
specified by the environment on the opponent(s)
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Games specifically designed for Machine
learning purposes

For Generative modeling:

Fake Data

Generative Adversarial Networks
[Goodfellow et al. 2014]
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Games are a great tool to learn complex notions
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Games are a great tool to learn complex notions

Multi-player games are notoriously challenging
to train. [Goodfellow, 2016, Nowozin et al., 2016; Arjovsky et al., 2017].

The learning target is harder to define.
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Problem 1. is there a ‘best’ strategy?

Gauthier Gidel, . ,.H‘
Mila and DIRO, April 7th, 2020 Universite ofn




Problem 1. is there a ‘best’ strategy?

Gauthier Gidel, . ’,H‘
Mila and DIRO, April 7th, 2020 Universite ofn



Problem 1:is there a ‘best’ strategy?

There is no best single strategy.

But there is a best distribution

y

‘ Mixed equilibrium ‘
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Mixed Strategies are necessary to play games!!!

Starcraft |l

[Vinyals et al. 2019]
(Picture fromn DeepMind'’s Blog post)

Problem: too many pure strategies to naively consider
distributions over strategies (mixed-strategies).

In RL: Pure strategy == deterministic policy
Mixed strategy == stochastic policy 10
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Mixed Strategies are necessary to play games!!!

Actions limit ~22 per5 s mRequested delay ~200 ms

Picture from [Vinyals

N ! ! @ et al. 2019]
Attack mm — . . g
Build mm ! g

When next
action?

What? Who? Where?

Problem: we have a limited capacity: (we cannot represent some pure or
mixed-strategy) C—>It changes the (best) way to play the game.

Limited capacity (constraints no imposed by the rules):
- Physical limitation for the number of action per minute.
- Neural networks cannot represent any function. 11
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Qutline

1. Latent games: how to leverage function approximation to play games.
2. Game Optimization: what are the potential difficulties arising.
3. The landscape of games: an empirical study of practical landscapes.

4. Future Work: Design of new adversarial formulation for ML.
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Qutline

1. Latent games: how to leverage function approximation to play games.

Actions limit ~22 per 5 s mRequested delay ~200 ms

=

Move l !
Attack nmm — [— —_
Build mm a--
What? Who? Where? ~ 'Whennext
action?
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Minimax Theorems for Latent games:

or how | learned to stop worrying about mixed-Nash and love neural nets

Gauthier Gidel, David Balduzzi, Wojciech Czarnecki, Marta Garnelo and Yoram Bachrach,
arXiv 2020
Work under review done during an internship at DeepMind London
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Lay of the land

Many recent successes to solve what the ML community call (two-player) games:

Poker Starcraft Generative Adversarial Nets

........

[Brown and Sandholm 2018] [Vinyals et al. 2019]

(Picture from FAIR's Blog post) (Picture from DeepMind's Blog post) [Wu etal 2020]

Using neural networks
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Lay of the land

Theoretical focus (what is our goal)

e Game theory: “one must consider mixed strategy’.

e Previous game theoretic papers on GANs consider the networks as
PpuU re-strategies: [Arora et al.,, 2017; Oliehoek et al., 2018; Grnarova et al., 2018; Hsieh et al., 2019]

/\
(¥, G) := Exndata|In(¥(z))] + EZNN(O,Id) In(1 — ¥(G(2))]

Mixture of networks == distribution over weights (not practical)
In practice: correspond to finite collection of models (very costly)
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Lay of the land

Theoretical focus (what is our goal)

e Game theory: “one must consider mixed strategy’.

. P . .
e Previous ¢ .ract'tloner ~C.ANs consider the networks as
re-straf alr (nOt ) > 3 ays USed e L
pu / \ aChieve st tCO"ect,-On) of s,ngle 8; Hsieh et al., 2019]
dle-of. Netwoy
(1), G) 1= 0K et al, 21" 8 (SOTA) o = W (G(2))]
? e al

» 2020

Mixture of networks == distribution over weights (not practical)
In practice: correspond to finite collection of models (very costly)

17

G§|Uthler Gidel, : Université l'"\

Mila and DIRO, April 7th, 2020 de Montréal



Bridging the gap between theory and practice

Theoretical focus: can we achieve an equilibrium with a single pair of agents???

Previous work: Our contributions:
1.  No theoretical work except on GANSs. 1. Unify “real world games” (Poker, Starcraft)
[Arora et al,, 2017, Oliehoek et al., 2018; and machine learning games (CANS)

Grnarova et al,, 2018; Hsieh et al., 2019]

18
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Bridging the gap between theory and practice

Theoretical focus: can we achieve an equilibrium with a single pair of agents???

Previous work: Our contributions:
1.  No theoretical work except on GANSs. 1. Unify “real world games” (Poker, Starcraft)
[Arora et al,, 2017; Oliehoek et al., 2018; and machine learning games (CANS)

Grnarova et al,, 2018; Hsieh et al., 2019]

. . 2. Propose a way to see networks directly as
2. Theoretical work on GANs considered mixed-strategies.

networks as pure strategies.
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Bridging the gap between theory and practice

Theoretical focus: can we achieve an equilibrium with a single pair of agents???

Previous work: Our contributions:
1.  No theoretical work except on GANSs. 1. Unify “real world games” (Poker, Starcraft)
[Arora et al,, 2017, Oliehoek et al., 2018; and machine learning games (CANS)

Grnarova et al,, 2018; Hsieh et al., 2019]

. . 2. Propose a way to see networks directly as
2. Theoretical work on GANs considered mixed-strategies.

networks as pure strategies.

o . 3. Definition of game/equilibrium that take
3. Advoca.tmg N practice fora into account the practical considerations
collection of weights. (very costly) (finite capacity and single pair of network):
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Bridging the gap between theory and practice

Theoretical focus: can we achieve an equilibrium with a single pair of agents???

Previous work: Our contributions:
1.  No theoretical work except on GANSs. 1. Unify “real world games” (Poker, Starcraft)
[Arora et al,, 2017; Oliehoek et al., 2018; and machine learning games (CANS)

Grnarova et al,, 2018; Hsieh et al., 2019]

2. Propose a way to see networks directly as

2. Theoretical work on GANs considered mixed-strategies.

networks as pure strategies.

o . 3. Definition of game/equilibrium that take
3. Advoca.tmg N practice fora into account the practical considerations
collection of weights. (very costly) (finite capacity and single pair of network):

4. Unable to explain why a single pair of 4. Proof that one can reach and approximate

networks achieve SOTA. equilibrium with a single pair of networks,
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Structure of the section:

1. Definition of a game (heed for mixed strategies)

2. GAN example: represent mixed-strategies with function
(neural networks)

3. Generalization to any game!
4. Using these function we can define a new concept of

equilibrium (limited to the representable mixed-strategies)
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A (zero-sum) game, what is this?

Set of strategies for Set of strategies for payoff/reward for
the first player the second player the first player

N / /
p: AxXx B —R

23
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How to reach an equilibrium ?

Solution: play strategies randomly

SO(Pa Q) — k€a~p,b~q[‘70(aa b)]

\/ ——

Probability Average
distributions payoff
over strategies

24
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How to reach an equilibrium ?

Fundamental result of game theory
[von Neumann, 1928]:

By playing mixed-strategy one can achieve an
equilibrium.

vomies | p(p, q) = Eanp bgl(a, b)

)
\/ Y
\ Any probability Aver?cfge
. . . payo

distributions
over strategies
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Example: Rock-Paper-Scissors

I In that particular example:

- antisymmetric cost

- Winning ==

1 - Losing == -1
- Tying ==

- Zero-sum games are

I more general
26
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First contribution: (Naive) GANs

Generator

Discriminator

(fake) Image

Function

27
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First contribution: Payoff of (Naive) GANs

Convention: O is “fake” and 1is “real”

P(,1) = Egrmdaralm (@) + In(1 = ()

How well the dataset is classified as “real” How well the fake image is
classified as “fake”
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First contribution: Payoff of (Naive) GANs

Going from pure-strategy to mixed-strategies: L pG

P(9615) = Eamataralln $(&)] +EampolIn(1 — $(2))]

y;

N__~ Y
How well the fake image is
classified as “fake”

How well the dataset is classified as “real”
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Payoff of (Naive) GANs

P0G, ¥) 1= Barmdatal I (a')] + B lIn(l — ()

Fact: The Generator correspond to a mixed strategy.

(G, ) = }Ew’fvdata [hﬂw(ﬂ?')]fr , 2~ N(0,14) In(1 —(G(2)

How well the dataset is classified as “real”

How well the fake image is \
classified as “fake”
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Idea: use function approximation to
construct mixtures of strategie

f:Z2— A f(z)=a~pr,z~m

i

Latent space || strategy space

We can use functions to represents a
distribution (i.e. a mixed strategy)!!!

31
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Idea: use function approximation to

construct mixtures of strategie Normal or uniform

distribution \
f:Z2— A f(z)=a~pr,z~m

i

Latent space || strategy space

We can use functions to represents a
distribution (i.e. a mixed strategy)!!!

o(f,9) = e, Dg) = Eomr 2rmpr [0(f(2), 9(2'))]

32
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Set of strategies for Set of strategies for payoff/reward for
the first player the second player the first player

N | /
p:AxB—R

Standard game theory: Latent games theory:
- Consider distributions over A and B. - Consider distributions encoded by limited
(mixed strategies) capacity functions.
N /
0(p,4) = Eanpbali(a, b)) 0(f,9) = B s [0(£(2), 9(2'))]
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Set of strategies for Set of strategies for payoff/reward for
the first player the second player the first player

N | /
p:AxB—R

Standard game theory: Latent games theory:
- Consider distributions over A and B. - Consider distributions encoded by limited
(mixed strategies) capacity functions.
N /
0(p,4) = Eanpbali(a, b)) 0(f,9) = B s [0(£(2), 9(2'))]

- When A infinite (or large), distribution - Tractable even when Alinfinite.

space over A infinite dimensional!l!
34
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Set of strategies for Set of strategies for payoff/reward for
the first player the second player the first player

N | /
p:AxB—R

Standard game theory: Latent games theory:
- Consider distributions over A and B. - Consider distributions encoded by limited
(mixed strategies) capacity functions.
. /
0(p,4) = Eanpbali(a, b)) 0(f,9) = B s [0(£(2), 9(2'))]

Tractable even when A infinite.

- When A infinite (or large), distribution

space over A infinite dimensional!l! Correspond to practical GANs

Extend to any games. 35
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Question: Can we extend von Neumann'’s
Theorem to Latent games?

Answer: Yes!

And it provides the notion of a limited capacity
equilibrium.

36
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In a latent game, the agents
leverage function approximation
to play mixed strategies

Related to the RL policies used to play StarCraft |l [Vinyals et al. 2019]

Related to GANs generators [Goodfellow et al. 2014].
General and flexible framework that aim to explain why neural nets achieve

to approximate equilibria in complex games.

37
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- Each agent updates their function for a given architecture.

- Limited capacity to play the game.

Theorem (informal): we can define a notion of
limited-capacity cquilibrium for a latent game that
depends on the capacity of the functions of each agents.

- Differs from the Nash of the game (unlimited capacity equilibrium)

38
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Achieving Pure-Nash with Neural Nets
Theorem (informal): We can achieve a pure

approximate limited-capacity equilibrium using

wide enough networks.

Takeaway: This result bridges the gap between theory and practice.

39
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Qutline
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A Variational Inequality Perspective
on GANS

Gauthier Gidel*, Hugo Berard*, Gaétan Vignoud, Pascal Vincent, Simon Lacoste-Julien
*equal contribution work presented at ICLR 2019

. Phadi .
\ facebook lrrzia Université &6 M [ I a
. Artificial Intelligence Research Az ot e de Montréal ...6\’.}7. 9
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Game training is Bate fascinating !

42
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Minimax Training is \wara fascinating

Rediscovery of the failure of gradient method
in games [Goodfellow, 2016]

Example: WGAN with linear discriminator

© (.07
and generator [Mescederer et al., 2018]
—0.5
. T T
min @ max ¢ Egop,[z] — ¢ 0E,p.[2] ~ . o L
6 6.l fsll<1 e - 1 NN o -
~1 0 1 2
0

Bilinear saddle point = Linear in 6 and ¢
= “Cycling behavior” (see right).

Our contribution: analysis of gradient,

rgnelﬂrg réleaﬂ)g( 0 ¢ <:| averaging and extragradient for bilinear
saddle points.
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Minimax Training is Aaxde fascinating

Rediscovery of the failure of gradient method
in games [Goodfellow, 2016]

Example: WGAN with linear discriminator
and generator [Mescederer et al., 2018]

. T -
min max E.. ] — OF. _ .
0 ¢,||f¢||L§1¢ T p’D[ ] ¢ z pz[ ]

Bilinear saddle point = Linear in 6 and ¢
= “Cycling behavior” (see right).

-1

-2

=3

-4

-4 -3 -2 -1 0 1 2 3 +

9cR PR

: . Our contribution: analysis of gradient,
LITLIL T el X H ¢ <:| averaging and extragradient for bilinear
saddle points.
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Generative Adversarial Networks as a
Variational Inequality Problem (VIP)

45
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GCANSs as a Variational Inequality

New perspective for GANs:
- Based on the vector field of the game and its stationary conditions.
- Relates to vast literature with standard algorithmes.

Best strategy for fir}s\t player (min) is: 0*
Nash-Equilibrium: \L(9*7 ¢> SY E(Q*) ¢*)} S L(@, ¢>{<)\

Best strategy for second player (makx) is: (b*

Stationary Conditions: VHL(H*, ¢*) . V¢L(6*, QS*) . 0
f f

Gradient of the first Gradient of the second
player at the Nash player at the Nash
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Main takeaways from this perspective:

The losses do not matter.

What matter is the vector field followed for the training:
VoL(6,9) )
F(,¢) = ’
00 = (31009

This vector field may exhibit rotations.

Need for specific techniques to handle rotations.
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Standard Algorithms from Variational Inequality

Method 1: Averaging - Converge even for “cycling behavior”.
- Easy to implement. (out of the training loop)
- Can be combined with any method.

General Online averaging: w = (1 —py)ws—1 + prwy where 0<p <1.
T—-1
: | _ 1
Example 1. Uniform averaging Pt = Z >0 wp= T E Wi
k=0
Example 2: I

Exponentialmoving p, =1—-08<1,t>0: wp=(1-7) ZBT_twt + 3" wo
averaging (EMA) i—1
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Standard Algorithms from Variational Inequality

Method 2: Extragradient
Wi

Wi 1 = wy — Y F(wy) \F(ujt)
- StepT t+3 ¢ ¢ ¢ - Standard in the literature.

w Wiyl - Does not require averaging.
- Step2: Wi+1 = Wi — ’YtF(Wt+%) t+1 ! Flon,) Theoretically and empirically
! : faster.
y

Intuition:

1. Game perspective: Look one step in the future and anticipate next move of adversary.

2. Euler's method: Extrapolation is close to an implicit method because Wy1/2 ~ Wi

Wil — Wit1/2 = O(%Q)

49
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Standard Algorithms from Variational Inequality

Method 2: Extragradient

New Intuition: Extrapolation is close to an implicit method because Wy /9 X Wit1

Implicit step: w1 = wy — NF (wiy1)

Unknown:
Require to solve a
non-linear system

50
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Extrapolation from the past: Re-using the gradients

Problem: Extragradient requires to compute two gradients at each step.

Solution: Extrapolation from the past Re-use gradient. Wt—1 F(w,_1)

- Step: WH_% = Wt — ’YtF(wt_%) <—— Re-use from previous iteration. Wt

- Step 2 wiy1 = wy — W F(wy 41 ) ~—— (same as extragradient).
Wi41 ’
F(wt+%)

51
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Extrapolation from the past: Re-using the gradients

Problem: Extragradient requires to compute two gradients at each step.

Solution: Extrapolation from the past Re-use gradient. Wt—1 F(w,_1)

- Step: WH_% = Wt — ’YtF(wt_%) <—— Re-use from previous iteration. Wt

- Step 2 wiy1 = wy — W F(wy 41 ) ~—— (same as extragradient).
Wyl
Wi41 ’

F(Wt+%)

New method with
convergence
guarantees!!!

Related to [Daskalakis et al., 2018]
52
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step-size = 0.2

Gauthier Gidel,

Mila and DIRO, April 7th, 2020

alt
avg
extra
past

ool 3

alt
avg
extra
past

step-size = 0.5

@
@
®
...
®
@
1 2 3 -+
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Algorithm 4 Extra-Adam: proposed Adam with extrapolation step.

input: step-size 7, decay rates for moment estimates (31, 32, access to the stochastic gradients V£, (-)
and to the projection Pq|-] onto the constraint set 2, initial parameter wy, averaging scheme (p¢)¢>1
fort=0...T —1do
Option 1: Standard extrapolation.
Sample new minibatch and compute stochastic gradient: g; < V/{;(w;)
Option 2: Extrapolation from the past
Load previously saved stochastic gradient: g; = V{;_1 /5(w;_1/2)
Update estimate of first moment for extrapolation: m;_1 /9 < S1m;—1 + (1 — B1)g: Extrapolation
Update estimate of second moment for extrapolation: v;_1 /o <= B2v;—1 + (1 — B2) i (Adam style)
Correct the bias for the moments: 171 /2 < my—1/2/(1 — BF* 1), D4—1/2 < ve—1/2/(1 — B3 1)

Perform extrapolation step from iterate at time ¢: w;_1 /2 < Pg [w; — n%]

Sample new minibatch and compute stochastic gradient: g, /2 < Vi 1/2(wii1/2)
Update estimate of first moment: m; < S1m;_q /2 + (1—B1)gsa1 /2

Update estimate of second moment: v; <= Bav;_1/2 + (1 — 2)g7 4 /2 Update
Compute bias corrected for first and second moment: 17y < m;/(1 — B3Y), ¥y + vy /(1 — B3Y) (Adam style)
Perform update step from the iterate at time ¢: w; 41 < Polw; — 7 \/Z_:;E]

end for

Output: wy_ /o, wr Or W = E;‘F:_Ol Pt+1Wit1/2/ E;F:_Ol p++1 (see (8) for online averaging)
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Experimental Results: WGAN-GP (ResNet) on CIFARITO

Inception Score vs
Number of updates

8.5 Model WGAN-GP (ResNet)

j” Method no averaging | uniform avg
£ 701 SimAdam Vwof & 21 Tl d ot 2F
“;(;.:,- AltAdam5 120+ 06 .6f .19
'*;-;(i.n- ExtraAdam 7.79 + .09 8.26 + .12
Sss T PastExtraAdam  7.71 + .12 7.84 + .18

5.0- - OptimAdam 180 = 07 | ¢.99 .12

4.5 —— AvgExtraAdam

y | | — A\'gP;\s't'E.\'lraAdmu T ) T

i lenbor jt Gonor-mfr up(l‘x'r(—w4 xl()? Extragradient Methods Averaging
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Recall takeaways from VIP perspective:

- What matter is the vector field followed for the training.

VHL(Hv Qb)
w8, 0) = —V4L(0,9)

- This vector field may exhibit rotations.

56

Gauthier Gidel, Université l'"\

Mila and DIRO, April 7th, 2020 de Montréal



Recall takeaways from VIP perspective:

- What matter is the vector field followed for the training.

VGL(Hv Qb)
"0 =\ V,L0,0

- This vector field maglexhibit rotations.

Is it really the
case in practice ?
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A closer look at the landscapes of
GANS

Gauthier Gidel*, Hugo Berard* Amjad Almairi, Pascal Vincent, Simon Lacoste-Julien
Work Accepted at ICLR 2020 done during an internship at ElementAl

facebook

N \ Artificial Intelligence Rese:: Université f”‘
ELEMENT de Montréal

G§Uthler Gidel, : Université l'”'l
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Recall takeaways from VIP perspective:

- What matter is the vector field followed for the training.

VGL(Hv Qb)
"=\ V,L00,0

. . o R [Mescheder et al.,, 2018]
- This vector field maglexhlblt rotations. [Balduzziet al, 2018]

Is it really the
case in practice ?
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Path-Angle: A new visualization
tool to detect rotations.

Initialization

1. Linear path between initialization and |ast
iterate.

wy = aw + (1 —a)w, ac€la,b

2. Compute the norm of the game
vector field.

= [[o(wa)|

3. Compute cosine similarity between
linear path and game vector field.

(W — w,v(wy))

c(a) =

- “w’ - w” ”'v(wa)H Last iterate
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Path-Angle Plots: 3 archetypal behaviors.

Orange: The norm of = 1.0

the game vector field. 0.5

0.0
Blue: The cosine

P . 0.5
similarity. 3

1.0

0.50 0.75 1.00 1.25

Sign Switch: Indicates
attractive behavior.
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Path-Angle Plots: 3 archetypal behaviors.

N ™

(b) Rotation only
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Path-Angle Plots: 3 archetypal behaviors.

r

Orange: The norm of
the game vector field.

Blue: The cosine
similarity.

f the

Norm «
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0.5

0.0

0.5

1.0

0.50 0.75 1.00 1.25

Sign Switch: Indicates
attractive behavior.

Gauthier Gidel,

N ™

(b) Rotation only
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i
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Bump: Indicates

rotational behavior.

Mila and DIRO, April 7th, 2020
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(c) Rotation and attraction
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o
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Mix between bump and
sign switch: Indicates
rotational + attractive
behavior.
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V
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ANg

Path-

0.05

Norm of the gradient
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NSGAN

WGAN-GP

Gradient Norm

Gradient Norm

Large bump indicates the
presence of rotations.

04 05 06 07
Linear Path

04 05 06 07 08 09 10
Linear Path

(a) MoG = 8.97

(b) MNIST, I

Path Annle
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™~
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Linear Path

(d) MoG (e) MNIST, IS =9.46

Gauthier Gidel,

Mila and DIRO, April 7th, 2020
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Selected other Publications

107

5i
e Accelerating Smooth Games by Manipulating Spectral Shapes, joint work with Waiss "
Azizian, Damien Scieur,loannis Mitliagkas and Simon Lacoste-Julien. AISTATS 2020 ——» 5 Sy " (
e ATight and Unified Analysis of Extragradient for a Whole Spectrum of Differentiable | |
Games, joint work with Waiss Azizian, loannis Mitliagkas and Simon Lacoste-Julien. —5i f- 1
AISTATS 2020 10— ; : -

e Implicit Regularization of Discrete Gradient Dynamics in Deep Linear Neural
Networks, joint work with Francis Bach and Simon Lacoste-Julien. NeurlPS 2019 \

e Reducing Noise in GAN Training with Variance Reduced Extragradient, joint work with
Tatjana Chavdarova, Francois Fleuret and Simon Lacoste-Julien. NeurIPS 2019

Trace Norm
(3]

e  Non-normal Recurrent Neural Network (hnnRNN): learning long time dependencies 0
10° 10! 102 103 104 10°

while improving expressivity with transient dynamics, joint work with Giancarlo Kerg, Number of iterations
Ky.le.Goyette, Maximilian Puelma Touzel, Eugene Vorontsov, Yoshua Bengio and Guillaume os._ CIFARIO ResNet CIFAR100 ResNet
Lajoie. NeurlPS 2019

e  Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates,
joint work with Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt and Simon
Lacoste-Julien. NeurlIPS 2019

Iterations led Iterations led
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https://arxiv.org/abs/1906.05945
https://arxiv.org/abs/1906.05945
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https://www.di.ens.fr/~slacoste/
https://arxiv.org/abs/1904.13262
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https://www.di.ens.fr/~slacoste/
https://arxiv.org/abs/1904.08598
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https://arxiv.org/abs/1905.12080
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https://arxiv.org/abs/1905.09997
https://vaswanis.github.io/
https://www.cs.ubc.ca/~amishkin/
https://gauthiergidel.github.io/Issam%20Laradji
https://www.cs.ubc.ca/~schmidtm/
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https://www.di.ens.fr/~slacoste/Simon%20Lacoste-Julien
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Building new adversarial formulations for a

learning purpose

Design new adversarial
formulation for pure machine

learning purpose.

Explore cooperative or
coordination concepts to
design new learning
objectives.
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Training Elo

Impact of using a
“league” of agents

Evaluation

Training
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Study of non-monotone vector fields

Gradient Vector Field and Trajectory
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Figure from [Gidel et al. 2019]
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Thank you!!l
Any question ?



Achieving super-human performance in Chess has
been long standing challenge

v

[Shannon 1950] [Samuel 1959] Deep Blue (1996) Deeper Blue (1997) [Campbell et al. 2002]
MATT
Programming Some studies in machine Research paper
a computer for learning using the game KASPAROV BEATS on Dee Bﬁlju:
playing chess. of checkers "DEEP BLUE' IN p
ONE MOVE

Matthew Pritchett

Gauthier Gidel,

Mila and DIRO, April 7th, 2020

Photo: EPA
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Beyond Chess, achieving super-human performance in multi-player games

are great challenges
Go Dota 2

38 NpneGo  \eeSeda \

[Silver et al. 201‘6‘] . [OpenAl et al. 2019]

(Picture from DeepMind's blog post) (Picture from OpenAl's Blog post)

Poker Starcraft Il

iy
9

[Brown and Sandholm 2019]

uuuuuu

[Vinyals et al. 2019]

(Picture from FAIR's Blog post) (Picture from DeepMind'’s Blog post) 75
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Games specifically designed for Machine
learning purposes

For Generative modeling: For learning classifier robust to
adversarial attacks

Generative Adversarial Networks

[GOO!fe”OW et a_lj 2014] Adversarial Training
W& - [Madry et al. 2017]

T+

T sign(VaJ (0, x,y)) csign(VT(0;2,3))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Picture: [Goodfellow et al. 2014]

Gauthier Gidel, Université ,.H..
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Problem: is there a ‘best’ action?

beats

Gauthier Gidel,

beats

7
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Problem: is there a ‘best’ strategy?

Gauthier Gidel, Uni it ’,H‘
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Problem: is there a ‘best’ strategy?

beats

Gauthier Gidel,

8.V
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Problem: is there a ‘best’ strategy?

Gauthier Gidel,
Mila and DIRO, April 7th, 2020
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Problem: is there a ‘best’ strategy?

There is no best action.
But there is a best team

Mixed equilibrium ‘

beats

81
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Problem: is there a ‘best’ action?

action.

,‘m(jtiOn
rox T Dest team
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Starcraft Il is more challenging to train and evaluate than Go:

Go

§- RNonac-~ .

[Silver et al. 2016]
(Picture from DeepMind's blog post)

‘;
o
)
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Starcraft Il is more challenging to train and evaluate than Go:

Go

-‘ :§_. NonaG~

[Silver et al. 2016]
(Picture from DeepMind's blog post)

Starcraft Il

[Vinyals et al. 2019]
(Picture fromn DeepMind'’s Blog post)

Gauthier Gidel, Université ru'a
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Problem 1: is there a ‘best’ action?

Gauthier Gidel, Université ,.H..
Mila and DIRO, April 7th, 2020 de Montréal




Problem 1: is there a ‘best’ action?

The best agent plays the
‘best’ actions in a
“unpredictable” way.

His behavior cannot be
exploited

86
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Problem 1: is there a ‘best’ action?

The best agent IS

exploited

87
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Problem 2: Can we train a reasonably ‘good’ agent?
(and if yes, how???)

Standard minimization: Minimax objective:
Gradient descent Gradient method
NN '
AN 7
R
Pl ~
]
. . 92 2 "
min min 0“ + ¢ minmax 6 -¢
0eR pER 0cR ¢€eR
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Problem 2: Can we train a reasonably ‘good’ agent?
(and if yes, how???)

Standard minimization: Minimax objective:
Gradient descent Gradient method
N
AN
R
Pl
92 2
min 6° 4+ ¢ min max 6 - ¢
0,0p€R 0cR peR
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Example: Rock-Paper-Scissors

Fundamental result of game theory [von Neumann, 1928]: there exists

1)  anumberV, called the value of the game,
2) astrategy for each player such that their
what the other does.

V) nho matter

“As far as | can see, there could be
no theory of games [without] the

- . Minimax Theorem”
V . qépPI(IIB) pglpa(’)i) QO(p, q von Neumann (1953)

@(PvQ) = EEafvp,qu W}
Y

Probability Average
distributions payoff
over actions 90
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000

Colonel Blotto Game:

- 00

+

000,

Battlefield 1
(Black wins)

Battlefield 2
(Black wins)

Battlefield 3
(White wins)

|
o]

Game:
(Black wins)

0000 - 000 -

Gauthier Gidel,

Mila and DIRO, April 7th, 2020

|
oe]

Strategy: One
allocation

We want agent to
play mixture of
strateqy, i.e,
distribution on
allocations
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OO0

Battlefield 1
(P2 wins)

Colonel Blotto Game;

OO0

Battlefield K
(P1 wins)

A mixed strategy is a distribution
over the simplex

Gauthier Gidel,

Mila and DIRO, April 7th, 2020

Simplified version:
Same number of
soldier to allocate.

l

A strategy is a point
in the simplex of
dimension K.
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Continuous Colonel Blotto Game:

P, + + Py =1
Battlefield 1 I Battlefield K
q, + + Qg =1
Payoff = 1{p, > q} + ... + 1P > qy} 03

Gauthier Gidel, Université rH\

Mila and DIRO, April 7th, 2020 de Montréal



Differentiable Colonel Blotto Game:

P, + + Py =]
Agents: Latent functions.
Battlefield 1| ... Battlefield K 2z~ N (() 1) 4( ) c A %
q, + + Qg =1
Payoff =@(D;-Q,) + ... + O(P, - 9, ) 94
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Example: Rock-Paper-Scissors

Fundamental result of game theory [von Neumann, 1928]: there exists

1) _anumberV, called the value of the game,
2) | a strategy for each player such that their average gain is at least V (resp. -V) no |

matter what the other does.

V:= min max ,g) = max min ,
qeP(B) peP(A) 90(]9 Q) pEP(A) qeP(B) cp(p q)

A Goal of the 90(1?, Q) — EEaNp,qu [90(0’7 b)]}

ame: find
X \/ Y

this strategy

Probability Average
distributions payoff
over strategies 95
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concept:

0 '2(')() 400 600 200
Number of iterations

A
4 S T

O iterations 400 iterations 800 iterations
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(Very) Quick reminder on Generative
Adversarial Networks (GANS)

97
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Generative Adversarial Networks (GANS)

[Goodfellow et al. NIPS 2014]

D 4 (): Probability of being real.
maximize log-likelihood

Examplel: Minimax GAN [Goodfellow et al. 2014]

Generator

min e B,y 08( Dy (2))] + B loB(1 ~ Dg(G(2))

If D is non-parametric:  [(0) = JSD(pp||ps)
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Generative Adversarial Networks (GANS)

[Goodfellow et al. NIPS 2014]

D 4 (): Probability of being real.
maximize log-likelihood

Examplel: Minimax GAN [Goodfellow et al. 2014]

Generator

min e B,y 08( Dy (2))] + B loB(1 ~ Dg(G(2))

If D is non-parametric:  [(0) = JSD(pp||ps)

Example2: WGAN formulation [Arjovsky et al. 2017]

min | max_ Bopo[fo(2)] = Eznpz[fo(90(2))

99



Building new adversarial formulations for a
learning purpose

Explore cooperative or

coordination concepts to . -
. . Example: make adversarial training a latent

de§|gn.new learning game

objectives. [Madry et al. 2017]

+.007 x ¢

x +

® sign(VaJ(6, 2, y)) esign(VeJ(0,z,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Picture: [Goodfellow et al. 2014]
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Compute Coarse Correlated equilibria for

‘coordination games’

Learning to coordinate by
sharing the latent variable.

o(f,9) = E.urlo(f(2),9(2))]

Swerve

Straight

Swerve

Straight

Swerve Straight
Tie, Tie Lose, Win
Win, Lose | Crash, Crash
Swerve Straight
0,0 -1, +1

+1, -1 | -1000, -1000
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