

New (Optimization) Perspectives on GANs

Gauthier Gidel

I. A Variational Inequality Perspective on GANs.

II. Reducing Noise in GANs with Variance Reduced Methods.

A Variational Inequality Perspective on GANs

Gauthier Gidel^{*1}, Hugo Berard^{*12}, Gaëtan Vignoud¹, Pascal Vincent¹², Simon Lacoste-Julien¹

*equal contribution ¹ Mila, Université de Montréal ² Facebook AI Research (FAIR), Montréal Artificial Intelligence Research

Hugo Berard

Gaëtan Vignoud

Pascal Vincent

Simon Lacoste-Julien

- 1. Quick Recap on GANs and two-player games.
- 2. GAN as a Variational Inequality Problem.
- 3. Optimization of Variational Inequality.
- 4. Experimental results.
- 5. Conclusion.

NB: All the citations in this talk are in my arXiv submission.

Quick recap on Generative Adversarial Networks (GANs) (and two-player games)

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs)

$$\begin{array}{l} \text{Discriminator} & \text{Generator} \\ \min_{\theta} \max_{\phi} \mathbb{E}_{x \sim p_{\mathcal{D}}}[\log(D_{\phi}^{\downarrow}(x))] + \mathbb{E}_{z \sim p_{\mathcal{Z}}}[\log(1 - D_{\phi}(G_{\theta}^{\downarrow}(z)))] \\ \\ \text{If D is non-parametric:} \quad L(\theta) = \text{JSD}(p_{\mathcal{D}}||p_{\theta}) \end{array}$$

Non-saturating GAN: "much stronger gradient in early learning"

$$\underbrace{\operatorname{Loss of Generator}}_{\substack{\mu\\ \theta}} - \mathbb{E}_{z \sim p_{\mathcal{Z}}}[\log(D_{\phi}(G_{\theta}(z)))]} \qquad \underbrace{\operatorname{max} \mathbb{E}_{x \sim p_{\mathcal{D}}}[\log(D_{\phi}(x))] + \mathbb{E}_{z \sim p_{\mathcal{Z}}}[\log(1 - D_{\phi}(G_{\theta}(z)))]}}_{\phi}$$

Two-player GamesPlayer 1Player 2
$$\boldsymbol{\theta}^* \in \arg\min_{\boldsymbol{\theta}\in\Theta} \mathcal{L}^{(\boldsymbol{\theta})}(\boldsymbol{\theta}, \boldsymbol{\varphi}^*)$$
 and $\boldsymbol{\varphi}^* \in \arg\min_{\boldsymbol{\varphi}\in\Phi} \mathcal{L}^{(\boldsymbol{\varphi})}(\boldsymbol{\theta}^*, \boldsymbol{\varphi})$ Zero-sum game if: $\mathcal{L}^{(\boldsymbol{\theta})} = -\mathcal{L}^{(\boldsymbol{\varphi})}$ also called Saddle Point (SP).

Example: WGAN formulation [Arjovsky et al. 2017]

$$\min_{\theta} \max_{\phi, ||f_{\phi}||_{L} \leq 1} \underbrace{\mathbb{E}_{x \sim p_{\mathcal{D}}}[f_{\phi}(x)] - \mathbb{E}_{z \sim p_{\mathcal{Z}}}[f_{\phi}(g_{\theta}(z)))]}_{\mathcal{L}^{(\boldsymbol{\theta})}} = -\mathcal{L}^{(\boldsymbol{\varphi})}$$

Two-player Games

Player 1

Player 2

 $\boldsymbol{\theta}^* \in \argmin_{\boldsymbol{\theta} \in \Theta} \mathcal{L}^{(\boldsymbol{\theta})}(\boldsymbol{\theta}, \boldsymbol{\varphi}^*) \quad \text{and} \quad \boldsymbol{\varphi}^* \in \argmin_{\boldsymbol{\varphi} \in \Phi} \mathcal{L}^{(\boldsymbol{\varphi})}(\boldsymbol{\theta}^*, \boldsymbol{\varphi})$

- In games we want to **converge** to the Saddle Point.
- Different from **single** objective **minimization** where we want to avoid saddle points.
- Saddle point -> Zero-sum game (or Minmax)

Example: Non-saturating GAN: [Goodfellow et al. 2014]

Loss of Generator

Loss of Discriminator

 $\min_{\theta} -\mathbb{E}_{z \sim p_{\mathcal{Z}}}[\log(D_{\phi}(G_{\theta}(z)))] \qquad \max_{\phi} \mathbb{E}_{x \sim p_{\mathcal{D}}}[\log(D_{\phi}(x))] + \mathbb{E}_{z \sim p_{\mathcal{Z}}}[\log(1 - D_{\phi}(G_{\theta}(z)))]$

Minmax training is hard different !

Minmax training is hard different !

(You can replace "minmax" with two-player games)

"Minmax Training is Hard ..."

Example: WGAN with **linear** discriminator and generator Gradient vector field: $F(\theta, \phi) = \begin{pmatrix} \nabla_{\theta} L_{\theta}(\theta, \phi) \\ \nabla_{\phi} L_{\phi}(\theta, \phi) \end{pmatrix}$

Bilinear saddle point = Linear in θ and ϕ \Rightarrow "Cycling behavior" (see right).

$$\min_{\theta} \max_{\phi, ||f_{\phi}||_{L} \leq 1} \phi^{T} \mathbb{E}_{x \sim p_{\mathcal{D}}}[x] - \phi^{T} \theta \mathbb{E}_{z \sim p_{\mathcal{Z}}}[z]$$

Generative Adversarial Networks as a Variational Inequality Problem (VIP)

New perspective for GANs:

- Based on stationary conditions.
- Relates to vast literature with standard algorithms.

Nash-Equilibrium:
$$\begin{cases} \theta^* = \arg\min_{\theta} L_{\theta}(\theta, \phi^*) \\ \phi^* = \arg\min_{\phi} L_{\phi}(\theta^*, \phi) \end{cases}$$
No player can improve its cost Stationary Conditions:
$$\begin{cases} \nabla_{\theta} L_{\theta}(\theta^*, \phi^*)^T (\theta - \theta^*) \ge 0 \\ \nabla_{\phi} L_{\phi}(\theta^*, \phi^*)^T (\phi - \phi^*) \ge 0 \end{cases}$$
$$\forall (\theta, \phi) \in \Theta \times \Phi$$
can be constraint sets.

Same problem but different perspective.

Joint Minimization vs. Stationary point

Stationary Conditions:

$$\begin{cases} \nabla_{\theta} L_{\theta}(\theta^*, \phi^*)^T (\theta - \theta^*) \ge 0\\ \nabla_{\phi} L_{\phi}(\theta^*, \phi^*)^T (\phi - \phi^*) \ge 0 \end{cases} \quad \forall (\theta, \phi) \in \Theta \times \Phi\end{cases}$$

Can be written as:

$$F(\omega) = \begin{pmatrix} \nabla_{\theta} L_{\theta}(\omega) \\ \nabla_{\phi} L_{\phi}(\omega) \\ \omega \neq (\theta, \phi) \end{pmatrix}$$

$$F(\omega^*)^T(\omega-\omega^*) \ge 0 \quad \forall \omega \in \Omega$$

 ω^* solves the Variational Inequality

<u>Unconstrained (or optimum in the interior):</u>

$$\|\nabla_{\boldsymbol{\theta}} \mathcal{L}^{(\boldsymbol{\theta})}(\boldsymbol{\theta}^*, \boldsymbol{\varphi}^*)\| = \|\nabla_{\boldsymbol{\varphi}} \mathcal{L}^{(\boldsymbol{\varphi})}(\boldsymbol{\theta}^*, \boldsymbol{\varphi}^*)\| = 0.$$

Figure from [Dunn 1979]

<u>Unconstrained (or ω^* in the interior):</u>

$$\|
abla_{oldsymbol{ heta}}\mathcal{L}^{(oldsymbol{ heta})}(oldsymbol{ heta}^*,oldsymbol{arphi}^*)\| = \|
abla_{oldsymbol{arphi}}\mathcal{L}^{(oldsymbol{arphi})}(oldsymbol{ heta}^*,oldsymbol{arphi}^*)\| = 0.$$

<u>Constrained and ω^* on the boundary:</u>

Figure from [Dunn 1979]

Takeaways:

- GAN can be formulated as a Variational Inequality.
- Encompass most of GANs formulations.
- **Standard algorithms** from Variational Inequality can be used for GANs.
 - **Theoretical Guarantees** (for convex and <u>stochastic</u> cost functions).

 $\begin{cases} \theta^* = \arg\min_{\theta} L_{\theta}(\theta, \phi^*) \\ \phi^* = \arg\min_{\phi} L_{\phi}(\theta^*, \phi) \\ \downarrow \\ F(\omega^*)^T (\omega - \omega^*) \ge 0 \quad \forall \omega \in \Omega \\ \downarrow \end{cases}$

-

Techniques to optimize VIP (Batch setting)

Method 1: Averaging

- Converge even for "cycling behavior".
- Easy to implement. (out of the training loop)
- Can be combined with any method.

$$\bar{\boldsymbol{\omega}}_T \stackrel{\text{def}}{=} \frac{\sum_{t=0}^{T-1} \rho_t \boldsymbol{\omega}_t}{S_T} , \quad S_T \stackrel{\text{def}}{=} \sum_{t=0}^{T-1} \rho_t .$$

Averaging schemes can be efficiently implemented in an **online** fashion:

$$\bar{\boldsymbol{\omega}}_t = (1 - \tilde{\rho}_t) \bar{\boldsymbol{\omega}}_{t-1} + \tilde{\rho}_t \boldsymbol{\omega}_t \quad \text{where} \quad 0 \leq \tilde{\rho}_t \leq 1.$$

Method 1: Averaging

- Converge even for "cycling behavior".
- Easy to implement. (out of the training loop)
- Can be combined with any method.

General Online averaging:

Example 1: Uniform averaging

$$\bar{\boldsymbol{\omega}}_t = (1 - \tilde{\rho}_t)\bar{\boldsymbol{\omega}}_{t-1} + \tilde{\rho}_t \boldsymbol{\omega}_t \quad \text{where} \quad 0 \le \tilde{\rho}_t \le 1.$$
$$\tilde{\rho}_t = \frac{1}{t}, \ t \ge 0: \quad \bar{\boldsymbol{\omega}}_T = \frac{1}{T}\sum_{k=0}^{T-1} \boldsymbol{\omega}_t$$

Example 2:
Exponential moving averaging
$$\tilde{\rho}_t = 1 - \beta < 1, t \ge 0: \quad \bar{\omega}_T = \frac{1}{1 - \beta} \sum_{k=0}^{T-1} \beta^t \omega_t$$
(EMA)

Method 1: Averaging

- Converge even for "cycling behavior".
- Easy to implement. (out of the training loop)
- Can be combined with any method.

General Online averaging:

Example 1: Uniform averaging

$$\bar{\boldsymbol{\omega}}_t = (1 - \tilde{\rho}_t)\bar{\boldsymbol{\omega}}_{t-1} + \tilde{\rho}_t \boldsymbol{\omega}_t \quad \text{where} \quad 0 \le \tilde{\rho}_t \le 1.$$
$$\tilde{\rho}_t = \frac{1}{t}, \ t \ge 0: \quad \bar{\boldsymbol{\omega}}_T = \frac{1}{T}\sum_{k=0}^{T-1} \boldsymbol{\omega}_t$$

 $\begin{array}{ll} \underline{\text{Example 2:}} \\ \textbf{Exponential moving} \\ \text{averaging (EMA)} \end{array} & \tilde{\rho}_t = 1 - \beta < 1 \,, \ t \geq 0 \, : \quad \bar{\omega}_T = (1 - \beta) \sum_{t=1}^T \beta^{T-t} \omega_t + \beta^T \omega_0 \end{array}$

Method 1: Averaging

- Converge even for "cycling behavior".
- Easy to implement. (out of the training loop)
- Can be combined with any method.

$$\begin{split} & \text{General Online averaging:} \quad \bar{\boldsymbol{\omega}}_t = (1 - \tilde{\rho}_t)\bar{\boldsymbol{\omega}}_{t-1} + \tilde{\rho}_t\boldsymbol{\omega}_t \quad \text{where} \quad 0 \leq \tilde{\rho}_t \leq 1 \,. \\ & \boxed{\text{Example 1: Uniform averaging}} \quad \tilde{\rho}_t = \frac{1}{t} \,, \, t \geq 0 \,: \quad \bar{\boldsymbol{\omega}}_T = \frac{1}{T}\sum_{k=0}^{T-1} \boldsymbol{\omega}_t \\ & \frac{\text{Example 2:}}{\text{Exponential moving averaging}} \quad \tilde{\rho}_t = 1 - \beta < 1 \,, \, t \geq 0 \,: \quad \bar{\boldsymbol{\omega}}_T = \frac{1}{1 - \beta}\sum_{k=0}^{T-1} \beta^t \boldsymbol{\omega}_t \end{split}$$

Method 1: Averaging

- Converge even for "cycling behavior".
- Easy to implement. (out of the training loop)
- Can be combined with any method.

$$\begin{array}{lll} \text{General Online averaging:} & \bar{\boldsymbol{\omega}}_t = (1-\tilde{\rho}_t)\bar{\boldsymbol{\omega}}_{t-1} + \tilde{\rho}_t\boldsymbol{\omega}_t & \text{where} & 0 \leq \tilde{\rho}_t \leq 1 \,. \\ \hline \textbf{Example 1: Uniform averaging} & \tilde{\rho}_t = \frac{1}{t} \,, \, t \geq 0 : & \bar{\boldsymbol{\omega}}_T = \frac{1}{T}\sum_{k=0}^{T-1}\boldsymbol{\omega}_t \\ \hline \textbf{Example 2:} & \textbf{Exponential moving} & \tilde{\rho}_t = 1-\beta < 1 \,, \, t \geq 0 : & \bar{\boldsymbol{\omega}}_T = (1-\beta)\sum_{t=1}^T \beta^{T-t}\boldsymbol{\omega}_t + \beta^T\boldsymbol{\omega}_t \\ \textbf{averaging (EMA)} \end{array}$$

Simple Minmax problem:
$$\min_{\theta \in \mathbb{R}} \max_{\phi \in \mathbb{R}} \theta \cdot \phi \qquad (\theta^*, \phi^*) = (0, 0) .$$

Simultaneous update:
$$\begin{cases} \theta_{t+1} = \theta_t - \eta \phi_t \\ \phi_{t+1} = \phi_t + \eta \theta_t \end{cases}$$
, Alternated update:
$$\begin{cases} \theta_{t+1} = \theta_t - \eta \phi_t \\ \phi_{t+1} = \phi_t + \eta \theta_t + \eta \theta_t \end{cases}$$

Standard Algorithms from Variational Inequality Method 1: Averaging

Simple Minmax problem:
$$\min_{\theta \in \mathbb{R}} \max_{\phi \in \mathbb{R}} \theta \cdot \phi \qquad (\theta^*, \phi^*) = (0, 0) .$$
Simultaneous update:
$$\begin{cases} \theta_{t+1} = \theta_t - \eta \phi_t \\ \phi_{t+1} = \phi_t + \eta \theta_t \end{cases}, \qquad \text{Alternated update:} \begin{cases} \theta_{t+1} = \theta_t - \eta \phi_t \\ \phi_{t+1} = \phi_t + \eta \theta_{t+1} \end{cases}$$

$$\downarrow \qquad \downarrow$$

$$\bar{\theta}_T, \bar{\phi}_T) := \frac{1}{T} \sum_{k=0}^{T-1} (\theta_t, \phi_t) \to \infty \qquad (\theta_T, \phi_T) \to \infty \qquad 0 < m \le ||\theta_T, \phi_T|| \le M \qquad (\bar{\theta}_T, \bar{\phi}_T) \to (0, 0)$$

Gauthier Gidel, <u>MSR Semin</u>ar, January 29, 2019

Method 1: Averaging

Simultaneous Vs. **Alternating** more developed in *Negative Momentum for Improved Game Dynamics* Gidel, Askari Hemmat, Pezeshki, Lepriol, Huang, Lacoste-Julien and Mitliagkas

Simultaneous update: $\begin{cases} \theta_{t+1} = \theta_t - \eta \phi_t \\ \phi_{t+1} = \phi_t + \eta \theta_t \end{cases},$ Alternated update: $\begin{cases} \theta_{t+1} = \theta_t - \eta \phi_t \\ \phi_{t+1} = \phi_t + \eta \theta_{t+1} \end{cases}$ \downarrow $(\bar{\theta}_T, \bar{\phi}_T) := \frac{1}{T} \sum_{k=0}^{T-1} (\theta_t, \phi_t) \to \infty \qquad (\theta_T, \phi_T) \to \infty$

> Gauthier Gidel, MSR Seminar, January 29, 2019

Method 2: Extragradient

Intuition:

- <u>Game prespective</u>: Look one step in the future and anticipate next move of adversary.
- Euler's method: Extrapolation is close to an **implicit** method because $m \omega_{t+1/2} pprox m \omega_{t+1}$ 2.

$$\boldsymbol{\omega}_{t+1} - \boldsymbol{\omega}_{t+1/2} = O(\gamma_t^2)$$

Gauthier Gidel, <u>MSR Seminar, January 29, 2019</u>

Intuition: Extrapolation is close to an implicit method because $\omega_{t+1/2} pprox \omega_{t+1}$

non-linear system

Intuition: Extrapolation is close to an implicit method

$$\min_{\theta \in \mathbb{R}} \max_{\phi \in \mathbb{R}} \theta \cdot \phi \quad \text{and} \quad (\theta^*, \phi^*) = (0, 0) \,.$$

Implicit:
$$\begin{cases} \theta_{t+1} = \theta_t - \eta \phi_{t+1} \\ \phi_{t+1} = \phi_t + \eta \theta_{t+1} \end{cases}, \quad \text{Extrapolation:} \begin{cases} \theta_{t+1} = \theta_t - \eta (\phi_t + \eta \theta_t) \\ \phi_{t+1} = \phi_t + \eta (\theta_t - \eta \phi_t) \end{cases}. \quad (*)$$

Proposition 2. The squared norm of the iterates $N_t \stackrel{\text{aeg}}{=} \theta_t^2 + \phi_t^2$, where the update rule of θ_t and ϕ_t are defined in (*), decreases geometrically for any $\eta < 1$ as, Implicit: $N_{t+1} = (1 - \eta^2 + \eta^4 + \mathcal{O}(\eta^6))N_t$, Extrapolation: $N_{t+1} = (1 - \eta^2 + \eta^4)N_t$.

> Gauthier Gidel, MSR Seminar, January 29, 2019

Method 2: Extragradient

Extrapolation from the past: Re-using the gradients

<u>Problem</u>: Extragradient requires to compute **two** gradients at each step.

Extrapolation from the past: Re-using the gradients

<u>Problem</u>: Extragradient requires to compute **two** gradients at each step.

step-size = 0.5

step-size = 0.2

Gauthier Gidel, MSR Seminar, January 29, 2019

Experimental Results

Experimental Results

Bilinear *Stochastic* Objective: (with constraints)

$$\frac{1}{n}\sum_{i=1}^n \left(\boldsymbol{x}^\top \boldsymbol{M}^{(i)} \boldsymbol{y} + \boldsymbol{x}^\top \boldsymbol{a}^{(i)} + \boldsymbol{y}^\top \boldsymbol{b}^{(i)} \right).$$

Algorithm 4 Extra-Adam: proposed Adam with extrapolation step.

Gauthier Gidel,

input: step-size η , decay rates for moment estimates β_1, β_2 , access to the stochastic gradients $\nabla \ell_t(\cdot)$ and to the projection $P_{\Omega}[\cdot]$ onto the constraint set Ω , initial parameter ω_0 , averaging scheme $(\rho_t)_{t\geq 1}$ for $t = 0 \dots T - 1$ do **Option 1: Standard extrapolation.** Sample new minibatch and compute stochastic gradient: $g_t \leftarrow \nabla \ell_t(\boldsymbol{\omega}_t)$ **Option 2: Extrapolation from the past** Load previously saved stochastic gradient: $g_t = \nabla \ell_{t-1/2}(\omega_{t-1/2})$ Extrapolation Update estimate of first moment for extrapolation: $m_{t-1/2} \leftarrow \beta_1 m_{t-1} + (1-\beta_1)g_t$ Update estimate of second moment for extrapolation: $v_{t-1/2} \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$ (Adam style) Correct the bias for the moments: $\hat{m}_{t-1/2} \leftarrow m_{t-1/2}/(1-\beta_1^{2t-1}), \hat{v}_{t-1/2} \leftarrow v_{t-1/2}/(1-\beta_2^{2t-1})$ Perform *extrapolation* step from iterate at time $t: \omega_{t-1/2} \leftarrow P_{\Omega}[\omega_t - \eta \frac{m_{t-1/2}}{\sqrt{v_{t-1/2} + \epsilon}}]$ Sample new minibatch and compute stochastic gradient: $g_{t+1/2} \leftarrow \nabla \ell_{t+1/2}(\omega_{t+1/2})$ Update estimate of first moment: $m_t \leftarrow \beta_1 m_{t-1/2} + (1 - \beta_1) g_{t+1/2}$ Update Update estimate of second moment: $v_t \leftarrow \beta_2 v_{t-1/2} + (1 - \beta_2) g_{t+1/2}^2$ (Adam style) Compute bias corrected for first and second moment: $\hat{m}_t \leftarrow m_t/(1-\beta_1^{2t}), \hat{v}_t \leftarrow v_t/(1-\beta_2^{2t})$ Perform update step from the iterate at time t: $\boldsymbol{\omega}_{t+1} \leftarrow P_{\Omega}[\boldsymbol{\omega}_t - \eta \frac{\hat{m}_t}{\sqrt{\hat{\mu}_t + \epsilon}}]$ end for

Output: $\omega_{T-1/2}$, ω_T or $\bar{\omega}_T = \sum_{t=0}^{T-1} \rho_{t+1} \omega_{t+1/2} / \sum_{t=0}^{T-1} \rho_{t+1}$ (see (8) for online averaging)

MSR Seminar, January 29, 2019

Experimental Results: WGAN on CIFAR10

Inception Score vs **nb of generator updates**

Inception Score on CIFAR10

Model	WGAN		
Method	no averaging	uniform avg	EMA
SimAdam	$6.05 \pm .12$	$5.83 \pm .16$	$6.08 \pm .10$
AltAdam5	$5.45\pm.08$	$5.72 \pm .06$	$5.49 \pm .05$
ExtraAdam	$6.38 \pm .09$	$6.38 \pm .20$	$\textbf{6.37}\pm.\textbf{08}$
PastExtraAdam	5.98 ± 0.15	6.07 ± 0.19	6.01 ± 0.11
OptimAdam	5.74 ± 0.10	5.80 ± 0.08	5.78 ± 0.05
Extragradient I	Methods	Averagi	ng

Gauthier Gidel, MSR Seminar, January 29, 2019

Experimental Results: WGAN-GP (ResNet) on CIFAR10

Inception Score vs Number of

Model	WGAN-GP (ResNet)	
Method	no averaging	uniform avg
SimAdam	$7.54 \pm .21$	$7.74 \pm .27$
AltAdam5	$7.20 \pm .06$	$7.67 \pm .15$
ExtraAdam	$7.79 \pm .09$	$8.26 \pm .12$
PastExtraAdam	$7.71 \pm .12$	$7.84 \pm .18$
OptimAdam	$7.80 \pm .07$	$7.99 \pm .12$

Gauthier Gidel, MSR Seminar, January 29, 2019

To sum-up

- GAN can be formulated as a **Variational Inequality.**
- Bring standard methods from optimization literature to the GAN community.
- Averaging helps improve the inception score (further evidence by [Yazici et al. 2018]).
- **Extrapolation** is **faster** and achieve better convergence.
- Introduce **Extrapolation from the past** a **cheaper** version of *extragradient*.
- We can design better algorithm for GANs inspired from Variational Inequality.

Noise in GANs

Reducing Noise in GAN Training with Variance Reduced Extragradient

Tatjana Chavdarova^{*12}, Gauthier Gidel^{*1}, François Fleuret¹², Simon Lacoste-Julien¹

*equal contribution ¹ Mila, Université de Montréal ² EPFL, IDIAP

Tatjana Chavdarova

François Fleuret

Simon Lacoste-Julien

Reminder: Need for Averaging or/and Extragradient.

Reminder: Need for Averaging or/and Extragradient.

No signal from the average iterate.

The green sequence **do not stop** at the optimum.

We need **last iterate** convergence. (Not Convergence of the averaged iterate)

Focus on Extragradient.

Issue: We did not consider **noise.**

Minimization

Issue: We did not consider **noise.**

Far from the objective: "approximately" the right direction

Far from the objective: Direction with noise can be "bad".

Standard methods to solve (bilinear) games:

Noise breaks Extragradient.

Theorem 2 (Noise may induce divergence). There exists a zero-sum stochastic game such that if $\omega_0 \neq \omega^*$, then for any step-size $\eta > 0$, the iterates (ω_t) computed by the stochastic extragradient method diverge geometrically, i.e., there exists $\rho > 0$, such that $\mathbb{E}[\|\omega_t - \omega^*\|^2] > \|\omega_0 - \omega^*\|^2(1 + \rho)^t$.

Noise breaks Extragradient.

Theorem 2 (Noise may induce divergence). There exists a zero-sum stochastic game such that if $\omega_0 \neq \omega^*$, then for any step-size $\eta > 0$, the iterates (ω_t) computed by the stochastic extragradient method diverge geometrically, i.e., there exists $\rho > 0$, such that $\mathbb{E}[\|\omega_t - \omega^*\|^2] > \|\omega_0 - \omega^*\|^2(1 + \rho)^t$.

Intuition:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \max_{\boldsymbol{\varphi} \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \boldsymbol{\theta}^\top \boldsymbol{A}_i \boldsymbol{\varphi}$$

Extragradient Updates:
$$\begin{cases} \boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta \boldsymbol{A}_I (\boldsymbol{\varphi}_t + \eta \boldsymbol{A}_J \boldsymbol{\theta}_t) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_t + \eta \boldsymbol{A}_I (\boldsymbol{\theta}_t - \eta \boldsymbol{A}_J \boldsymbol{\varphi}_t) \end{cases}$$

Noise breaks Extragradient.

Theorem 2 (Noise may induce divergence). There exists a zero-sum stochastic game such that if $\omega_0 \neq \omega^*$, then for any step-size $\eta > 0$, the iterates (ω_t) computed by the stochastic extragradient method diverge geometrically, i.e., there exists $\rho > 0$, such that $\mathbb{E}[\|\omega_t - \omega^*\|^2] > \|\omega_0 - \omega^*\|^2(1 + \rho)^t$.

Intuition:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \max_{\boldsymbol{\varphi} \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \boldsymbol{\theta}^\top \boldsymbol{A}_i \boldsymbol{\varphi}$$

Extragradient Updates:
$$\begin{cases} \boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta \boldsymbol{A}_I(\boldsymbol{\varphi}_t + \eta \boldsymbol{A}_J \boldsymbol{\theta}_t) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_t + \eta \boldsymbol{A}_I(\boldsymbol{\theta}_t - \eta \boldsymbol{A}_J \boldsymbol{\varphi}_t) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_t + \eta \boldsymbol{A}_I(\boldsymbol{\theta}_t - \eta \boldsymbol{A}_J \boldsymbol{\varphi}_t) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_t + \eta \boldsymbol{A}_I(\boldsymbol{\theta}_t - \eta \boldsymbol{A}_J \boldsymbol{\varphi}_t) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_t + \eta \boldsymbol{A}_I(\boldsymbol{\theta}_t - \eta \boldsymbol{A}_J \boldsymbol{\varphi}_t) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_t + \eta \boldsymbol{A}_I(\boldsymbol{\theta}_t - \eta \boldsymbol{A}_J \boldsymbol{\varphi}_t) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_t + \eta \boldsymbol{A}_I(\boldsymbol{\theta}_t - \eta \boldsymbol{A}_J \boldsymbol{\varphi}_t) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_t + \eta \boldsymbol{A}_I(\boldsymbol{\theta}_t - \eta \boldsymbol{A}_J \boldsymbol{\varphi}_t) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_t + \eta \boldsymbol{A}_I(\boldsymbol{\theta}_t - \eta \boldsymbol{A}_J \boldsymbol{\varphi}_t) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_t + \eta \boldsymbol{A}_I(\boldsymbol{\theta}_t - \eta \boldsymbol{A}_J \boldsymbol{\varphi}_t) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_t + \eta \boldsymbol{A}_I(\boldsymbol{\theta}_t - \eta \boldsymbol{A}_J \boldsymbol{\varphi}_t) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_t + \eta \boldsymbol{A}_I(\boldsymbol{\theta}_t - \eta \boldsymbol{A}_J \boldsymbol{\varphi}_t) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_t + \eta \boldsymbol{A}_I(\boldsymbol{\theta}_t - \eta \boldsymbol{A}_J \boldsymbol{\varphi}_t) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_t + \eta \boldsymbol{A}_I(\boldsymbol{\theta}_t - \eta \boldsymbol{A}_J \boldsymbol{\varphi}_t) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_t + \eta \boldsymbol{A}_I(\boldsymbol{\theta}_t - \eta \boldsymbol{A}_J \boldsymbol{\varphi}_t) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_t + \eta \boldsymbol{A}_I(\boldsymbol{\theta}_t - \eta \boldsymbol{A}_J \boldsymbol{\varphi}_t) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_t + \eta \boldsymbol{\varphi}_t$$

Extrapolation part

Reducing noise with Variance reduction methods.

- Idea: take advantage of **the finite sum**.
- Finite sum in ML: Expectation of a **finite** number of sample.
- Generator and discriminator losses can be written as:

$$\mathcal{L}^{(\boldsymbol{\theta})}\!(\boldsymbol{\omega}) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}^{(\boldsymbol{\theta})}\!(\boldsymbol{\omega}), \quad \mathcal{L}^{(\boldsymbol{\varphi})}\!(\boldsymbol{\omega}) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}^{(\boldsymbol{\varphi})}\!(\boldsymbol{\omega})$$

SVRG estimate of the gradient.

- Full batch gradient **expensive** but **tractable.**

$$egin{aligned} &oldsymbol{d}_{i}^{(oldsymbol{ heta})}\left(oldsymbol{\omega}
ight) := \left(
abla \mathcal{L}_{i}^{(oldsymbol{ heta})}\left(oldsymbol{\omega}
ight) -
abla \mathcal{L}_{i}^{(oldsymbol{ heta})}\left(oldsymbol{\omega}^{\mathcal{S}}
ight)
ight) + oldsymbol{\mu}_{oldsymbol{ heta}}^{\mathcal{S}} \ &oldsymbol{d}_{i}^{(oldsymbol{arphi})}\left(oldsymbol{\omega}
ight) := \left(
abla \mathcal{L}_{i}^{(oldsymbol{arphi})}\left(oldsymbol{\omega}
ight) -
abla \mathcal{L}_{i}^{(oldsymbol{arphi})}\left(oldsymbol{\omega}^{\mathcal{S}}
ight)
ight) + oldsymbol{\mu}_{oldsymbol{arphi}}^{\mathcal{S}}. \end{aligned}$$

$$\begin{array}{l} \text{/RG estimate of the gradient.} \\ \text{Full batch gradient expensive but tractable.} \\ \hline d_i^{(\theta)}\left(\omega\right) \coloneqq \left(\nabla \mathcal{L}_i^{(\theta)}(\omega) - \nabla \mathcal{L}_i^{(\theta)}\left(\omega^{\mathcal{S}}\right)\right) + \mu_{\theta}^{\mathcal{S}} \\ \hline d_i^{(\varphi)}\left(\omega\right) \coloneqq \left(\nabla \mathcal{L}_i^{(\varphi)}(\omega) - \nabla \mathcal{L}_i^{(\varphi)}\left(\omega^{\mathcal{S}}\right)\right) + \mu_{\varphi}^{\mathcal{S}}. \end{array}$$

S\

_

SVRG estimate of the gradient.

- Full batch gradient **expensive** but **tractable.**

Full gradient at the snapshot network

Snapshot network

$$egin{aligned} &oldsymbol{d}_{i}^{(oldsymbol{ heta})}\left(oldsymbol{\omega}
ight) := \left(
abla \mathcal{L}_{i}^{(oldsymbol{ heta})}\left(oldsymbol{\omega}
ight) -
abla \mathcal{L}_{i}^{(oldsymbol{ heta})}\left(oldsymbol{\omega}^{\mathcal{S}}
ight)
ight) + oldsymbol{\mu}_{oldsymbol{ heta}}^{\mathcal{S}} \ &oldsymbol{d}_{i}^{(oldsymbol{arphi})}\left(oldsymbol{\omega}
ight) := \left(
abla \mathcal{L}_{i}^{(oldsymbol{arphi})}\left(oldsymbol{\omega}
ight) -
abla \mathcal{L}_{i}^{(oldsymbol{arphi})}\left(oldsymbol{\omega}^{\mathcal{S}}
ight)
ight) + oldsymbol{\mu}_{oldsymbol{arphi}}^{\mathcal{S}}. \end{aligned}$$

SVRG estimate of the gradient. Snapshot network Full batch gradient **expensive** but **tractable**. Full gradient at the snapshot network _ $egin{aligned} & d_i^{(m{ heta})}\left(m{\omega} ight) := \left(abla \mathcal{L}_i^{(m{ heta})}(m{\omega}) - abla \mathcal{L}_i^{(m{ heta})}\left(m{\omega}^{\mathcal{S}} ight) ight) + m{\mu}_{m{ heta}}^{\mathcal{S}} & \mathbf{v}^{\mathbf{S}} \end{aligned}$ $oldsymbol{d}_{i}^{(oldsymbol{arphi})}\left(oldsymbol{\omega} ight) := \left(abla \mathcal{L}_{i}^{(oldsymbol{arphi})}\left(oldsymbol{\omega} ight) - abla \mathcal{L}_{i}^{(oldsymbol{arphi})}\left(oldsymbol{\omega}^{\mathcal{S}} ight) ight) + oldsymbol{\mu}_{oldsymbol{arphi}}^{\mathcal{S}}.$ - Unbiased estimates: $\mathbb{E}[d_i^{(m{ heta})}(m{\omega})] = rac{1}{n} \sum_{i=1}^n \nabla \mathcal{L}_i^{(m{ heta})}(m{\omega}) = \nabla \mathcal{L}^{(m{ heta})}(m{\omega})$

SVRG estimate of the gradient. Snapshot network Full batch gradient **expensive** but **tractable.** Full gradient at the snapshot network _ $oldsymbol{d}_{i}^{(oldsymbol{ heta})}\left(oldsymbol{\omega} ight):=\left(abla \mathcal{L}_{i}^{(oldsymbol{ heta})}(oldsymbol{\omega})abla \mathcal{L}_{i}^{(oldsymbol{ heta})}\left(oldsymbol{\omega}^{\mathcal{S}} ight) ight)+oldsymbol{\mu}_{oldsymbol{ heta}}^{\mathcal{S}}$ $oldsymbol{d}_{i}^{(oldsymbol{arphi})}\left(oldsymbol{\omega} ight) := \left(abla \mathcal{L}_{i}^{(oldsymbol{arphi})}\left(oldsymbol{\omega} ight) - abla \mathcal{L}_{i}^{(oldsymbol{arphi})}\left(oldsymbol{\omega}^{\mathcal{S}} ight) ight) + oldsymbol{\mu}_{oldsymbol{arphi}}^{\mathcal{S}}.$

- Unbiased estimates: $\mathbb{E}[d_i^{(\theta)}(\omega)] = \frac{1}{n} \sum_{i=1}^n \nabla \mathcal{L}_i^{(\theta)}(\omega) = \nabla \mathcal{L}^{(\theta)}(\omega)$
- Compute the snapshot only once per pass.

Variance Reduced Extragradient: SVRE

- Combine Extragradient + Variance Reduction for finite sum.

Variance Reduction of Strongly Monotone Games:

Method	Complexity	μ -adaptivity
SVRG	$\ln(1/\epsilon) \times (n + \frac{\bar{L}^2}{\mu^2})$	×
Acc. SVRG	$\ln(1/\epsilon) \times (n + \sqrt{n}\frac{\bar{L}}{\mu})$	×
SVRE (This paper)	$\ln(1/\epsilon) \times (n + \frac{\bar{L}}{\mu})$	\checkmark

SVRG and Acc. SVRG are from [Palaniapan and Bach 2016]

Why is this convergence rate not desirable?

$$\mathbb{E}[Err(\bar{\boldsymbol{\omega}}_T)] \leq O\left(\frac{\sup_{\boldsymbol{\omega}\in\Omega}\|\boldsymbol{\omega}-\boldsymbol{\omega}_0\|\sigma}{\sqrt{T}}\right) \quad \ \ \square \quad \ \ \text{Does not handle Unconstrained case.} \\ \text{No restart possible.} \end{cases}$$

Vs.

 $\mathbb{E}[Err(\bar{\boldsymbol{\omega}}_T)] \le O\left(\frac{\|\boldsymbol{\omega}^* - \boldsymbol{\omega}_0\|\sigma}{\sqrt{T}}\right)$

Does handle **Unconstrained case**. **Restart possible**.

SVRE on bilinear Game:

(Exact example where stochastic extragradient breaks)

Gauthier Gidel, MSR Seminar, January 29, 2019

a

First point, SVRE effectively reduces the variance:

Gauthier Gidel, MSR Seminar, January 29, 2019

Second point SVRE allows larger step-sizes: (SVHN)

Gauthier Gidel, <u>MSR Se</u>minar, January 29, 2019

Second point SVRE allows larger step-sizes: (ImageNet)

(a) IS (higher is better)

(b) FID (lower is better)

To sum-up

- **Noise** may be an issue in GANs.
- Proposed to combine VR + Extragradient to tackle **both** game and noise aspects.
- Unlike in single-objective minimization, we observed that **variance reduction could improve the performance** of deep learning models for GAN training.
- highlights the difference between game optimization and standard minimization.

