
New (Optimization) Perspectives on 
GANs

Gauthier Gidel



Gauthier Gidel, 
MSR Seminar, January 29, 2019

I. A Variational Inequality Perspective on GANs.

II. Reducing Noise in GANs with Variance Reduced Methods.
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1. Quick Recap on GANs and two-player games.

2. GAN as a Variational Inequality Problem.

3. Optimization of Variational Inequality.

4. Experimental results.

5. Conclusion.

NB: All the citations in this talk are in my arXiv submission.
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Quick recap on Generative 
Adversarial Networks (GANs)

(and two-player games)
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Generative Adversarial Networks (GANs)
Fake Data

True Data

GeneratorNoise

Discriminator
Fake
or
Real

[Goodfelow et al. NIPS 2014]
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Generative Adversarial Networks (GANs)

Discriminator Generator

If D is non-parametric:

[Goodfelow et al. NIPS 2014]

Non-saturating GAN: “much stronger gradient in early learning”
Loss of Generator Loss of Discriminator
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Two-player Games

Zero-sum game if: also called Saddle Point (SP).

Example: WGAN formulation [Arjovsky et al. 2017]

Player 2Player 1
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Two-player Games
Player 2Player 1

● In games we want to converge to the Saddle Point.

● Different from single objective minimization where 

we want to avoid saddle points.

● Saddle point  -> Zero-sum game (or Minmax)
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Two-player Games

Non zero-sum game if we do not have: 

Player 2Player 1

Example: Non-saturating GAN: [Goodfellow et al. 2014]

Loss of Generator Loss of Discriminator
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Minmax training is hard different !



Gauthier Gidel, 
MSR Seminar, January 29, 2019

Minmax training is hard different !

(You can replace “minmax” with two-player games)
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“Minmax Training is Hard ...”
Example: WGAN with linear discriminator 
and generator

Bilinear saddle point = Linear in 𝜃 and 𝜙 
⇒ “Cycling behavior” (see right).

Gradient vector field:
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Generative Adversarial Networks as 
a Variational Inequality Problem 

(VIP)
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GANs as a Variational Inequality

Nash-Equilibrium:

Stationary Conditions:

No player can improve its 
cost 

New perspective for GANs:
- Based on stationary conditions.
- Relates to vast literature with standard algorithms.

can be constraint 
sets.
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GANs as a Variational Inequality

Nash-Equilibrium: Stationary Conditions:

Same problem but different perspective.

Joint Minimization vs. Stationary point
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GANs as a Variational Inequality
Stationary Conditions:

Can be written as:

𝜔* solves the Variational 
Inequality
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GANs as a Variational Inequality
Stationary Conditions:

Figure from [Dunn 1979]

Unconstrained (or optimum in the interior):
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GANs as a Variational Inequality
Stationary Conditions:

Unconstrained (or ⍵* in the interior): Constrained and ⍵* on the boundary:

Figure from [Dunn 1979]
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GANs as a Variational Inequality
Takeaways:

- GAN can be formulated as a Variational Inequality.

- Encompass most of GANs formulations.

- Standard algorithms from Variational Inequality can 
be used for GANs.

- Theoretical Guarantees (for convex and stochastic 
cost functions).
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Techniques to optimize VIP 
(Batch setting)
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Standard Algorithms from Variational Inequality
Method 1: Averaging - Converge even for “cycling behavior”.

- Easy to implement. (out of the training loop)
- Can be combined with any method.

Averaging schemes can be efficiently implemented in an online fashion:
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Standard Algorithms from Variational Inequality
Method 1: Averaging - Converge even for “cycling behavior”.

- Easy to implement. (out of the training loop)
- Can be combined with any method.

General Online averaging: 

Example 1: Uniform averaging  

Example 2: 
Exponential moving averaging 
(EMA)
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Standard Algorithms from Variational Inequality
Method 1: Averaging - Converge even for “cycling behavior”.

- Easy to implement. (out of the training loop)
- Can be combined with any method.

General Online averaging: 

Example 1: Uniform averaging  

Example 2: 
Exponential moving 
averaging (EMA)
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Standard Algorithms from Variational Inequality
Method 1: Averaging

Simple Minmax problem: 
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Standard Algorithms from Variational Inequality
Method 1: Averaging

Simple Minmax problem: 
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Standard Algorithms from Variational Inequality
Method 1: Averaging Simultaneous Vs. Alternating more developed in

Negative Momentum for Improved Game Dynamics
Gidel, Askari Hemmat, Pezeshki, Lepriol, Huang, Lacoste-Julien and Mitliagkas



Gauthier Gidel, 
MSR Seminar, January 29, 2019

Standard Algorithms from Variational Inequality
Method 2: Extragradient

- Step 1:

- Step 2:

Intuition: 

1. Game prespective: Look one step in the future and anticipate next move of adversary.

2. Euler’s method: Extrapolation is close to an implicit method because 

- Standard in the literature.
- Does not require averaging.
- Theoretically and empirically 

faster.
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Standard Algorithms from Variational Inequality
Method 2: Extragradient

Intuition:  Extrapolation is close to an implicit method because 

Unknown:
Require to solve a 
non-linear system 
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Standard Algorithms from Variational Inequality
Method 2: Extragradient Intuition:  Extrapolation is close to an implicit method

*

*

almost the same
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Problem: Extragradient requires to compute two gradients at each step.

Solution: Extrapolation from the past                  Re-use gradient.

- Step 1:                                                           Re-use from previous iteration.

- Step 2:                                                            (same as extragradient).

Extrapolation from the past: Re-using the gradients 
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Extrapolation from the past: Re-using the gradients 

Problem: Extragradient requires to compute two gradients at each step.

Solution: Extrapolation from the past                  Re-use gradient.

- Step 1:                                                           Re-use from previous iteration.

- Step 2:                                                            (same as extragradient).

New Method !!!
Related to [Daskalakis et al., 2018]
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step-size = 0.2
step-size = 0.5
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Experimental Results
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Experimental Results

Bilinear Stochastic Objective: (with 
constraints)
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Extrapolation
(Adam style) 

Update
(Adam style) 
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Experimental Results: WGAN on CIFAR10
Inception Score on CIFAR10

Extragradient Methods

Inception Score vs 
nb of generator updates

Averaging
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Experimental Results: WGAN-GP (ResNet) on CIFAR10

Extragradient Methods Averaging

Inception Score vs 
Number of
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To sum-up

- GAN can be formulated as a Variational Inequality.

- Bring standard methods from optimization literature to the GAN community.

- Averaging helps improve the inception score (further evidence by [Yazici et al. 2018]).

- Extrapolation is faster and achieve better convergence.

- Introduce Extrapolation from the past a cheaper version of extragradient.

- We can design better algorithm for GANs inspired from Variational Inequality.



Noise in GANs



Reducing Noise in GAN Training with 
Variance Reduced Extragradient
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Reminder: Need for Averaging or/and Extragradient.
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Reminder: Need for Averaging or/and Extragradient.

No signal from the average iterate.

The green sequence do not stop at the optimum.

We need last iterate convergence.
(Not Convergence of the averaged iterate)

Focus on Extragradient.
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Issue: We did not consider noise.

Minimization Game
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Issue: We did not consider noise.

Far from the objective: 
“approximately”  the right direction

Far from the objective:
Direction with noise can be “bad”.
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Standard methods to solve (bilinear) games:

Gradient method Extragradient

Batch Method Diverge to ∞

Stochastic Method No hope for convergence ????
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Noise breaks Extragradient.
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Noise breaks Extragradient.
Intuition:

Extragradient Updates:
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Noise breaks Extragradient.
Intuition:

Extragradient Updates:
(Sample i and j)

Extrapolation part

Ai Aj = 0       No extrapolation

   Diverge as GD.
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Reducing noise with Variance reduction methods.

- Idea: take advantage of the finite sum.

- Finite sum in ML: Expectation of a finite number of sample.

- Generator and discriminator losses can be written as:
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SVRG estimate of the gradient.

- Full batch gradient expensive but tractable.
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SVRG estimate of the gradient.

- Full batch gradient expensive but tractable.

- Unbiased estimates:

Snapshot network

Full gradient at the
snapshot network
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SVRG estimate of the gradient.

- Full batch gradient expensive but tractable.

- Unbiased estimates:

- Compute the snapshot only once per pass.

Snapshot network

Full gradient at the
snapshot network
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Variance Reduced Extragradient: SVRE

- Combine Extragradient + Variance Reduction for finite sum.
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Variance Reduction of Strongly Monotone Games:

SVRG and Acc. SVRG are from [Palaniapan and Bach 2016]
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Why is this convergence rate not desirable ?

Vs.

Does not handle Unconstrained case.
No restart possible.

Does handle Unconstrained case.
Restart possible.
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SVRE on bilinear Game: 
(Exact example where stochastic extragradient breaks) 
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First point, SVRE effectively reduces the variance:

Blue: Stochastic Extragradient

Brown: SVRE.
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Second point SVRE allows larger step-sizes: (SVHN)

SE: Stochastic Extragradient.

SVRE: Variance Reduced 
Extragradient.

-A: Adam

WS: Warm Start.

AVG: Average.

-VRAd (VRam): variant of Adam for 
SVRE.
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Second point SVRE allows larger step-sizes: (ImageNet)
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To sum-up

- Noise may be an issue in GANs.

- Proposed to combine VR + Extragradient to tackle both game and noise aspects.

- Unlike in single-objective minimization, we observed that variance reduction could 
improve the performance of deep learning models for GAN training. 

- highlights the difference between game optimization and standard minimization.


