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GENERATIVE ADVERSARIAL NETWORKS

[Goodfellow et al., 2014]
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CHALLENGES

- Standard supervised learning:

min
θ
L(θ)

- GANs: Hard (different) optimization problem: minimax.
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http://www.cs.cmu.edu/~vaishnan/talks/gan-stability-cmu.pdf


“NOISE”: NOISY GRADIENT ESTIMATES
DUE TO STOCHASTICITY

- Using sub-samples (mini-batches) of the full dataset to update the parameters

- Variance Reduced (VR) Gradient: optimization methods that reduce such noise

Minimization: Single-objective

θ

φ

Batch method direction

Stochastic method direction: noisy
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VARIANCE REDUCTION–MOTIVATION FOR GAMES

- INTUITIVELY: MINIMIZATION VS. GAME (NOISE FROM STOCHASTIC GRADIENT)
- EMPIRICALLY: BIGGAN–“INCREASED BATCH SIZE SIGNIFICANTLY IMPROVES

PERFORMANCES”

- TO SUM UP, TWO ISSUES:

θ

φ

θ
φ

Minimization Game

“approximately” the right direction Direction with noise can be “bad”
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- INTUITIVELY: MINIMIZATION VS. GAME (NOISE FROM STOCHASTIC GRADIENT)
- EMPIRICALLY: BIGGAN–“INCREASED BATCH SIZE SIGNIFICANTLY IMPROVES

PERFORMANCES”

- TO SUM UP, TWO ISSUES:

Brock et al. [2018] report a relative improvement of 46% of the
Inception Score metric [Salimans et al., 2016] on ImageNet if the

mini-batch size is increased 8–fold.
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VARIANCE REDUCTION–MOTIVATION FOR GAMES

- INTUITIVELY: MINIMIZATION VS. GAME (NOISE FROM STOCHASTIC GRADIENT)
- EMPIRICALLY: BIGGAN–“INCREASED BATCH SIZE SIGNIFICANTLY IMPROVES

PERFORMANCES”

- TO SUM UP, TWO ISSUES:

- Adversarial aspect from min-max→ Extragradient.

- Noise from stochastic gradient→ Variance Reduction.

Gauthier Gidel Generative Modeling and Model-Based Reasoning for Robotics and AIWorkshop 6 / 17



EXTRAGRADIENT
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EXTRAGRADIENT

Two players θ, ϕ. Idea: perform a “Lookahead step”

Extrapolation:

{
θt+1/2 = θt − η∇θLG(θt ,ϕt)
ϕt+1/2 = ϕt − η∇ϕLD(θt ,ϕt)

Update:

{
θt+1 = θt − η∇θLG(θt+1/2,ϕt+1/2)
ϕt+1 = ϕt − η∇ϕLD(θt+1/2,ϕt+1/2)
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VARIANCE REDUCED GRADIENT METHODS
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VARIANCE REDUCED ESTIMATE OF THE GRADIENT

Based on Finite sum assumption:

1
n

n∑
i=1
L(xi ,ω),

Epoch based algorithm:

- Save the full gradient
1
n
∑

i ∇L(xi ,ω
S) and the snapshot ωS .

- For one epoch use the update rule:

ω ← ω − η
[
∇L(xi ,ω)︸ ︷︷ ︸

Stochastic gradient

+ 1
n
∑

i
∇L(xi ,ω

S)−∇L
(
xi ,ω

S
)

︸ ︷︷ ︸
correction using saved past iterate

]

- Requires 2 stochastic gradients (at the current point and at the snapshot).

- If ωS
is close to ω → close to full batch gradient→ small variance.

- Full batch gradient expensive but tractable, e.g., compute it once per pass.
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SVRE: VARIANCE REDUCTION + EXTRAGRADIENT
PSEUDO–ALGORITHM

1. Save snapshot ωS ← ωt and compute
1
n
∑

i ∇L(xi ,ω
S).

2. For i in 1, . . . , epoch_length:
- Compute ωt+ 1

2
with variance reduced gradients at ωt .

- Compute ωt+1 with variance reduced gradients at ωt+ 1
2
.

- t ← t + 1
3. Repeat until convergence.
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1. Save snapshot ωS ← ωt and compute
1
n
∑

i ∇L(xi ,ω
S).

2. For i in 1, . . . , epoch_length:
- Compute ωt+ 1

2
with variance reduced gradients at ωt .

- Compute ωt+1 with variance reduced gradients at ωt+ 1
2
.

- t ← t + 1
3. Repeat until convergence.

SVRE yields the fastest convergence rate for strongly convex

stochastic game optimization in the literature.
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SVRE: EXPERIMENTS
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EXPERIMENTS
SVRE YIELDS STABLE GAN OPTIMIZATION

Stochastic baseline

SVRE
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− Always diverges.

− Many hyperparameters

(ηG , ηD , β1, γ, r ).
+ if convergence→ fast

+ Does not diverge.

+ fewer hyperparameters (omits

β1, γ, r )
− slower for very deep nets.
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SVRE: TAKEAWAYS
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SVRE: TAKEAWAYS

- Controlling variance is more critical for games (could be reason behind

success of Adam on GANs)
- SVRE: combines Extragradient and variance reduction.

- Best convergence rate (under some assumptions) for games.

- Good stability properties.
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THANKS.

Questions?
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APPENDIX
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THE GAN FRAMEWORK
EQUILIBRIUM AT pg = pd

The discriminator maximizes:

V (G ,D) =
∫

x
pd(x) log(D(x)) dx +

∫
z

pz(z) log(1− D(G(z))) dz

=
∫

x
pd(x) log(D(x)) + pg(x) log(1− D(x)) dx

Where we used x = G(z), and pg is the distribution of x .
Hence, the optimal discriminator D∗ is:

D∗(x) = pd(x)
pd(x) + pg(x)
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THE GAN FRAMEWORK
EQUILIBRIUM AT pg = pd

The generator minimizes:

V (G ,D∗) = E
x∼pd

[log D∗(x)] + E
x∼pg

[log(1− D∗(x))]

= E
x∼pd

[log pd(x)
pd(x) + pg(x) ] + E

x∼pg
[log pg(x)

pd(x) + pg(x) ]

= − log 4 + DKL(pd ||
pd + pg

2 ) + DKL(pg ||
pd + pg

2 )
= − log 4 + 2 · DJS(pd ||pg)

where we used: DJS(p‖q) = 1
2DKL(p‖p+q

2 ) + 1
2DKL(q‖p+q

2 ).

The optimum is reached when pg = pd ,
and the optimal value is − log 4.
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