Differentiable Games in the Era of Machine Learning

Gauthier Gidel

Mila and DIRO

Differentiable Games in the Era of Machine Learning

Adversarial Example Games

Avishek Joey Bose*, Gauthier Gidel*, Hugo Berard*, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, William L. Hamilton

Mila, McGill University, Université de Montréal, Facebook Al Research

Standard Adversarial Attack Setting:

 $x' \in \operatorname{argmax}_{x' \in \mathcal{X}} \ell(f(x'), y) \,, \quad \text{s.t.} \quad d(x, x') \leq \epsilon \,.$

- f: function to attack.
- $x \in \mathcal{X}$: input datapoint.
- $x' \in \mathcal{X}$: adversarial example.
- $y \in \mathcal{Y}$: true label.
- ℓ : loss function.

Standard Adversarial Attack Setting:

Intuitions

- Adversarial examples are features. [Ilyas et al. 2019]
- Adversarial examples **always exist** with Neural Nets [Bubeck, Cherapanamjeri, Gidel, Tachet des Combes 2021] [Daniely and Schacham 2020]

- These features can be learned.
- ullet Modifying them can attack a whole class ${\mathcal F}$ function.

Conclusion: the generator can learn to detect and change these features without querying $f_t \implies \text{NoBox attack.}$

A Realistic (and challenging) threat model: **No**n-interactive black**Box** (**NoBox**) threat model

- ullet Target model f_t : we want to break that model.
- ullet Target examples ${\mathcal D}$: the data we want to corrupt.
- ullet Model hypothesis class ${\mathcal F}$: our knowledge on the target model. New!
- Representative classifier f_c : we assume we can optimize over the hypothesis class using that representative classifier. New!
- A Reference Dataset \mathcal{D}_{ref} : similar to the training set of f_t New!

IDEA: Optimize over ${\mathcal F}$ to get adversarial examples that can attack any function in ${\mathcal F}$

Adversarial Example Games Framework

Game Between:

• A generator that generate adversarial examples conditioned on (x,y):

$$(x',y) \sim p_q \Leftrightarrow x' = g(x,y,z), (x,y) \sim \mathcal{D}, z \sim p_z \text{ with } d(x',x) \leq \epsilon.$$

ullet A Classifier f_c that aims at getting robust against adversarial examples:

Classification loss of an adversarial example of (x,y):

Adversarial Example Games Framework

Game Between:

• A generator that generate adversarial examples conditioned on (x,y):

$$(x',y) \sim p_g \Leftrightarrow x' = g(x,y,z), (x,y) \sim \mathcal{D}, z \sim p_z \text{ with } d(x',x) \leq \epsilon.$$

ullet A Classifier f_c that aims at getting robust against adversarial examples:

$$\max_{g \in \mathcal{G}_{\epsilon}} \min_{f_c \in \mathcal{F}} \mathbb{E}_{(x,y) \sim \mathcal{D}, z \sim p_z} [\ell(f_c(g(x,y,z)), y))] =: \varphi(f_c, p_g)$$

Attacking in the Wild: CIFAR 10

	Source	Attack	VGG-16	RN-18	WR	DN-121	Ine-V3
		Clean	11.2 ± 0.9	13.1 ± 2.0	6.8 ± 0.7	11.2 ± 1.4	9.9 ± 1.3
Architecture of classifier used to train attacker. f_c	RN-18	MI-Attack DI-Attack TID-Attack SGM-Attack AEG (Ours)	63.9 ± 1.3 77.4 ± 1.7 21.6 ± 1.3 68.4 ± 1.8 89.0 ± 2.1	74.6 ± 0.4 90.2 ± 0.8 26.5 ± 2.2 79.5 ± 0.5 96.8 ± 0.7	63.1 ± 1.2 74.0 ± 1.0 14.0 ± 1.5 64.3 ± 1.6 80.9 ± 2.4	72.5 ± 1.3 87.1 ± 1.3 22.3 ± 1.6 73.8 ± 1.0 91.6 ± 1.7	67.9 ± 1.6 85.8 ± 0.8 19.8 ± 0.9 70.6 ± 1.7 87.2 ± 1.6
	DN-121	MI-Attack DI-Attack TID-Attack SGM-Attack AEG (Ours)	54.3 ± 1.1 61.1 ± 1.9 21.7 ± 1.2 51.6 ± 0.7 90.5 ± 1.6	62.5 ± 0.9 69.1 ± 0.8 23.8 ± 1.5 60.2 ± 1.3 95.9 ± 1.4	56.3 ± 1.3 61.9 ± 1.1 14.0 ± 1.4 52.6 ± 0.9 80.3 ± 2.3	66.1 ± 1.5 77.1 ± 1.2 21.7 ± 1.1 64.7 ± 1.6 95.9 ± 1.4	65.0 ± 1.3 71.6 ± 1.6 19.3 ± 1.2 61.4 ± 1.3 90.6 ± 2.4
	VGG-16	MI-Attack DI-Attack TID-Attack AEG (Ours)	49.9 ± 0.1 65.1 ± 0.1 26.2 ± 0.6 94.2 ± 1.2	50.0 ± 0.2 64.5 ± 0.2 24.0 ± 0.6 93.7 ± 1.6	46.7 ± 0.4 58.8 ± 0.6 13.0 ± 0.2 77.1 ± 1.1	50.4 ± 0.6 64.1 ± 0.3 20.8 ± 0.7 92.3 ± 1.7	50.0 ± 0.3 60.9 ± 0.6 18.8 ± 0.2 86.5 ± 1.3

Target classifier we want to attack.

Table 2: Error rates on \mathcal{D} for average NoBox architecture transfer attacks with $\epsilon = 0.03125$

DeepMind

Real World Games look like **Spinning Tops**

Extensive Form Game / Game Tree

Normal Form Game Payoff

Definition 3. Nash clustering \mathbb{C} of the finite zero-sum symmetric game strategy Π set by setting for each $i \geq 1$: $N_{i+1} = \operatorname{supp}(\operatorname{Nash}(\mathbf{P}|\Pi \setminus \bigcup_{j \leq i} N_j))$ for $N_0 = \emptyset$ and $\mathbb{C} = (N_j : j \in \mathbb{N} \land N_j \neq \emptyset)$.

Definition 3. Nash clustering \mathbb{C} of the finite zero-sum symmetric game strategy Π set by setting for each $i \geq 1$: $N_{i+1} = \operatorname{supp}(\operatorname{Nash}(\mathbf{P}|\Pi \setminus \bigcup_{j \leq i} N_j))$ for $N_0 = \emptyset$ and $\mathbb{C} = (N_j : j \in \mathbb{N} \land N_j \neq \emptyset)$.

Theorem 2. Nash clustering satisfies $RPP(C_i, C_j) \ge 0$ for each j > i.

Game of **Tic Tac Toe** has more than 10⁵⁶⁷ behaviourally distinct pure strategies

We rely on **empirical game theory** through sampling

An open question: can the analysis be done implicitly through the game tree traversal?

Conclusion:

Empirical and Theoretical evidence that in real world game:

- Huge number of strategies.
- But tiny number of **Good** strategies
- Spinning top shape.
 (The worst you get the more strategies there is)

Thank you!